quadratic cost function
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 3)

2022 ◽  
Vol 11 (1) ◽  
pp. [12 P]-[12 P]
Author(s):  
María Aracelia Alcorta García ◽  
SANTOS MENDEZ DIAZ ◽  
JOSE ARMANDO SAENZ ESQUEDA ◽  
GERARDO MAXIMILIANO MENDEZ DIAZ ◽  
NORA ELIZONDO VILLAREAL ◽  
...  

This work presents an application of the Risk-Sensitive (R-S) control with tracking applied to a stochastic nonlinear system which models the operation of an electronic expansion valve (EEV) in a conventional evaporator. A novel dynamical stochastic equation represents the mathematical model of the evaporator system. The R-S stochastic optimal problem consists of the design of an optimal control u(t) such that the state reaches setpoint values (SP) and minimizes the exponential quadratic cost function. The presence of disturbances and errors in the sensor measurements is represented by Gauss white noise in the state equation, with the coefficient v(e/(2?^2 )) . One novel characteristic in this proposal is that the coefficient of the control into the state equation contains the state term. The error and exponential quadratic cost function show that the R-S control has a better performance versus the classical PID (Proportional, Integral Derivative) control. Key Words: Optimal Risk-Sensitive control with tracking, modelling of the evaporator.


2021 ◽  
pp. 107754632110324
Author(s):  
Berk Altıner ◽  
Bilal Erol ◽  
Akın Delibaşı

Adaptive optics systems are powerful tools that are implemented to degrade the effects of wavefront aberrations. In this article, the optimal actuator placement problem is addressed for the improvement of disturbance attenuation capability of adaptive optics systems due to the fact that actuator placement is directly related to the enhancement of system performance. For this purpose, the linear-quadratic cost function is chosen, so that optimized actuator layouts can be specialized according to the type of wavefront aberrations. It is then considered as a convex optimization problem, and the cost function is formulated for the disturbance attenuation case. The success of the presented method is demonstrated by simulation results.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251874
Author(s):  
Maria Molinos-Senante ◽  
Alexandros Maziotis

Evaluating the performance and analyzing the cost drivers of water utilities is of great interest for water regulators and water sector managers. This study uses a quadratic cost function to investigate the existence of economies of scale and scope in the Chilean water and sewerage industry over the period 2010–2017. We also estimate and decompose productivity growth into technical change and scale efficiency change. Technical change is further broken into pure, non-neutral and scale-augmenting technical change. The results indicate that cost savings can be achieved by increases in the scale of production and the separation of water and sewerage services. Productivity progressed favorably throughout the whole period at an annual rate of 8.4%, which was attributed to the scale effect, the adoption of new technologies and a good allocation of resources. Some policy implications are finally discussed based on our findings.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110254
Author(s):  
Armaghan Mohsin ◽  
Yazan Alsmadi ◽  
Ali Arshad Uppal ◽  
Sardar Muhammad Gulfam

In this paper, a novel modified optimization algorithm is presented, which combines Nelder-Mead (NM) method with a gradient-based approach. The well-known Nelder Mead optimization technique is widely used but it suffers from convergence issues in higher dimensional complex problems. Unlike the NM, in this proposed technique we have focused on two issues of the NM approach, one is shape of the simplex which is reshaped at each iteration according to the objective function, so we used a fixed shape of the simplex and we regenerate the simplex at each iteration and the second issue is related to reflection and expansion steps of the NM technique in each iteration, NM used fixed value of [Formula: see text], that is, [Formula: see text]  = 1 for reflection and [Formula: see text]  = 2 for expansion and replace the worst point of the simplex with that new point in each iteration. In this way NM search the optimum point. In proposed algorithm the optimum value of the parameter [Formula: see text] is computed and then centroid of new simplex is originated at this optimum point and regenerate the simplex with this centroid in each iteration that optimum value of [Formula: see text] will ensure the fast convergence of the proposed technique. The proposed algorithm has been applied to the real time implementation of the transversal adaptive filter. The application used to demonstrate the performance of the proposed technique is a well-known convex optimization problem having quadratic cost function, and results show that the proposed technique shows fast convergence than the Nelder-Mead method for lower dimension problems and the proposed technique has also good convergence for higher dimensions, that is, for higher filter taps problem. The proposed technique has also been compared with stochastic techniques like LMS and NLMS (benchmark) techniques. The proposed technique shows good results against LMS. The comparison shows that the modified algorithm guarantees quite acceptable convergence with improved accuracy for higher dimensional identification problems.


2021 ◽  
Vol 6 (11) ◽  
pp. 12298-12320
Author(s):  
Xiangyun Shi ◽  
◽  
Xiwen Gao ◽  
Xueyong Zhou ◽  
Yongfeng Li ◽  
...  

<abstract><p>An SQEIAR model with media coverage and asymptomatic infection is proposed for populations with a certain level of immunity. Firstly, we discuss the extinction and persistence for the diseases of the model by using basic reproduction number $ \mathcal{R}_C $. Then the parameter threshold is analyzed and the effect of parameters on the basic reproduction number is discussed. Furthermore, the optimal media coverage strategy and quarantine strategy for optimal problems under quadratic cost function are derived by applying Pontryagin's Maximum Principle.</p></abstract>


2020 ◽  
Vol 71 (4) ◽  
pp. 246-253
Author(s):  
Vojtech Veselý

AbstractThe paper is devoted to obtain original equivalent subsystem method to design of decentralized controller for linear large scale systems. On the theoretical example a new robust decentralized PID switched controller design procedure is obtained for linear time-varying (gain scheduled plant model) uncertain complex system with decentralized output and input structure. Controller design procedure to decentralized controller design performs on the subsystem level. The designed decentralized switched controller ensures the robust stability of closed-loop complex polytopic system with performance H2 quadratic cost function (QSR). The proposed practical examples with ideal or non-ideal switch of switching parameters show the effectiveness of equivalent subsystem approach.


2019 ◽  
Vol 70 (6) ◽  
pp. 499-501
Author(s):  
Vojtech Veselý ◽  
Ladislav Körösi

Abstract The paper deals with the problem to obtain robust PID controller design procedure to linear time invariant descriptor uncertain polytopic systems using descriptor system stability theory and H2 criterion approach in the form of quadratic cost function. In the frame of Lyapunov function, H2 quadratic cost function and Bellman-Lyapunov equation the obtained designed novel procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure, the designer could use controller with different structure like as P, PI, PID, PI-D. For PI-D controllers D-part feedback the designer could choose any available output/state derivative variables of real systems. The effectiveness of the obtained results is demonstrated on the randomly generated examples.


Sign in / Sign up

Export Citation Format

Share Document