Design and Implement A Low Cost Indoor Position System with Physiological Signal Monitoring

Author(s):  
Yi-Shiun Lee ◽  
Yong-Yi Fanjiang ◽  
Chi-Huang Hung ◽  
Chun-Che Yu
2017 ◽  
Vol 14 (3) ◽  
pp. 20161178-20161178 ◽  
Author(s):  
Long Chen ◽  
Xining Yang ◽  
Jianfeng Wu ◽  
Lingyan Fan

2013 ◽  
Vol 344 ◽  
pp. 107-110
Author(s):  
Shun Ren Hu ◽  
Ya Chen Gan ◽  
Ming Bao ◽  
Jing Wei Wang

For the physiological signal monitoring applications, as a micro-controller based on field programmable gate array (FPGA) physiological parameters intelligent acquisition system is given, which has the advantages of low cost, high speed, low power consumption. FPGA is responsible for the completion of pulse sensor, the temperature sensor, acceleration sensor data acquisition and serial output and so on. Focuses on the design ideas and architecture of the various subsystems of the whole system, gives the internal FPGA circuit diagram of the entire system. The whole system is easy to implement and has a very good promotional value.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1656 ◽  
Author(s):  
Liping Xie ◽  
Xingyu Zi ◽  
Qingshi Meng ◽  
Zhiwen Liu ◽  
Lisheng Xu

Despite that graphene has been extensively used in flexible wearable sensors, it remains an unmet need to fabricate a graphene-based sensor by a simple and low-cost method. Here, graphene nanoplatelets (GNPs) are prepared by thermal expansion method, and a sensor is fabricated by sealing of a graphene sheet with polyurethane (PU) medical film. Compared with other graphene-based sensors, it greatly simplifies the fabrication process and enables the effective measurement of signals. The resistance of graphene sheet changes linearly with the deformation of the graphene sensor, which lays a solid foundation for the detection of physiological signals. A signal processing circuit is developed to output the physiological signals in the form of electrical signals. The sensor was used to measure finger bending motion signals, respiration signals and pulse wave signals. All the results demonstrate that the graphene sensor fabricated by the simple and low-cost method is a promising platform for physiological signal measurement.


2019 ◽  
Vol 7 (14) ◽  
pp. 8258-8267 ◽  
Author(s):  
Pengcheng Zhu ◽  
Yao Wang ◽  
Ming Sheng ◽  
Yaling Wang ◽  
Yuedong Yu ◽  
...  

A flexible active dual-parameter sensor for sensitive temperature and physiological signal monitoring has been developed via integrating thermoelectric and piezoelectric conversion.


Sign in / Sign up

Export Citation Format

Share Document