Extraction of impervious surface based on multi-source satellite data of Qinhuai River basin from 1979–2009

Author(s):  
Caili Li ◽  
Jinkang Du ◽  
Youpeng Su ◽  
Qian Li ◽  
Liang Chen
2021 ◽  
Vol 13 (22) ◽  
pp. 4494
Author(s):  
Shanshan Wang ◽  
Yingxia Pu ◽  
Shengfeng Li ◽  
Runjie Li ◽  
Maohua Li

Impervious surfaces are key indicators for urbanization monitoring and watershed degradation assessment over space and time. However, most empirical studies only extracted impervious surface from spatial, temporal or spectral perspectives, paying less attention to integrating multiple dimensions in acquiring continuous changes in impervious surfaces. In this study, we proposed a neighborhood-based spatio-temporal filter (NSTF) to obtain the continuous change information of impervious surfaces from multi-temporal Landsat images in the Qinhuai River Basin (QRB), Jiangsu, China from 1988–2017, based on the results from semi-automatic decision tree classification. Moreover, we used the expansion intensity index (EII) and the landscape extension index (LEI) to further characterize the spatio-temporal characteristics of impervious surfaces on different spatial scales. The preliminary results showed that the overall accuracies of the final classification were about 95%, with the kappa coefficients ranging between 0.9 and 0.96. The QRB underwent rapid urbanization with the percentage of the impervious surfaces increasing from 2.72% in 1988 to 25.6% in 2017. Since 2006, the center of urbanization expansion was shaped from the urban built-up areas of Nanjing and Jiangning to non-urban built-up areas of the Jiangning, Lishui, and Jurong districts. The edge expansion occupied 73% on average among the different landscape expansion types, greatly beyond outlying (12%) and infilling (15%). The window size in the NSTF has a direct impact on the subsequent analysis. Our research could provide decision-making references for future urban planning and development in the similar basins.


2014 ◽  
Vol 70 (4) ◽  
pp. 671-677 ◽  
Author(s):  
Xiaomin Ji ◽  
Youpeng Xu ◽  
Longfei Han ◽  
Liu Yang

Stream structure is usually dominated by various human activities over a short term. An analysis of variation in stream structure from 1979 to 2009 in the Qinhuai River Basin, China, was performed based on remote sensing images and topographic maps by using ArcGIS. A series of river parameters derived from river geomorphology are listed to describe the status of river structure in the past and present. Results showed that urbanization caused a huge increase in the impervious area. The number of rivers in the study area has decreased and length of rivers has shortened. Over the 30 years, there was a 41.03% decrease in river length. Complexity and stability of streams have also changed and consequently the storage capacities of river channels in intensively urbanized areas are much lower than in moderately urbanized areas, indicating a greater risk of floods. Therefore, more attention should be paid to the urban disturbance to rivers.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1470 ◽  
Author(s):  
Yuqin Gao ◽  
Dongdong Wang ◽  
Zhenxing Zhang ◽  
Zhenzhen Ma ◽  
Zichen Guo ◽  
...  

Urban agglomeration polders (UAPs) are often used to control flooding in eastern China. The impacts of UAPs on individual flood events have been extensively examined, but how flood risks are influenced by UAPs is much less examined. This study aimed to explore a three-dimensional joint distribution of annual flood volume, peak flow and water level to examine UAPs’ impact on flood risks based on hydrological simulations. The dependence between pairwise hydrological characteristics are measured by rank correlation coefficients and graphs. An Archimedean Copula is applied to model the dependence structure. This approach is applied to the Qinhuai River Basin where UAPs are used proactively for flood control. The result shows that the Frank Copula can better represent the dependence structure in the Qinhuai River Basin. UAPs increase risks of individual flood characteristics and integrated risks. UAPs have a relatively greater impact on water level than the other two flood characteristics. It is noted that the impact on flood risk levels off for greater floods.


2020 ◽  
Vol 34 (13) ◽  
pp. 3967-3984
Author(s):  
Runjie Li ◽  
Jinkang Du ◽  
Guodong Bian ◽  
Yuefeng Wang ◽  
Changchun Chen ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 3223
Author(s):  
Yan Li ◽  
Chunlin Huang ◽  
William P. Kustas ◽  
Hector Nieto ◽  
Liang Sun ◽  
...  

Daily evapotranspiration (ET) and its components of evaporation (E) and transpiration (T) at field scale are often required for improving agricultural water management and maintaining ecosystem health, especially in semiarid and arid regions. In this study, multi-year daily ET, E, and T at a spatial resolution of 100 m in the middle reaches of Heihe River Basin were computed based on an ET partitioning method developed by combing remote sensing-based ET model and multi-satellite data fusion methodology. Evaluations using flux tower measurements over irrigated cropland and natural desert sites indicate that this method can provide reliable estimates of surface flux partitioning and daily ET. Modeled daily ET yielded root mean square error (RMSE) values of 0.85 mm for cropland site and 0.84 mm for desert site, respectively. The E and T partitioning capabilities of this proposed method was further assessed by using ratios E/ET and T/ET derived from isotopic technology at the irrigated cropland site. Results show that apart from early in the growing season when the actual E was reduced by plastic film mulching, the modeled E/ET and T/ET agree well with observations in terms of both magnitude and temporal dynamics. The multi-year seasonal patterns of modeled ET, E, and T at field scale from this ET partitioning method shows reasonable seasonal variation and spatial variability, which can be used for monitoring plant water consumption in both agricultural and natural ecosystems.


2015 ◽  
Vol 26 (5) ◽  
pp. 631-649 ◽  
Author(s):  
Venkatesh Dutta ◽  
Ravindra Kumar ◽  
Urvashi Sharma

Purpose – The purpose of this paper is to evaluate the potential impact of human-induced intervention on hydrological regimes of Gomti river, one of the important tributaries of the Ganga Alluvial Plain in India aiming at an overall assessment of the status quo. Design/methodology/approach – The research methodology includes following four components: study of basin morphology, sub-surface geology and sediments profile of Gomti river; a comparison of LANDSAT satellite data of 1978 and IRS-1C/LISS-III satellite data of 2008 to study the changes occurring in the built-up area, forest and water bodies of the basin; study of flow patterns in different stretches of river Gomti from 1978 to 2012; and water quality assessment at different sites from origin of the river to its confluence in the Ganges. Findings – The paper shows that over the years, the water source in the tributaries feeding the river Gomti has shrunk, reducing the flow in the river. A steady increase in developed land area due to rapid urban sprawl has occurred in recent decades, due to which forest cover and wetlands are decreasing, the river and floodplains are getting fragmented, the hydromorphology changed considerably and several tributaries are getting dried as a result of indiscriminate exploitation of groundwater. There is no flow in the initial 57 km stretch of the river with wide encroachment in active floodplains. Groundwater over-extraction to meet the demands of increasing population and intensive agriculture has led to reduction in base-flows and in some reaches even negative. Extensive land-use changes in the Gomti river basin (GRB) severely impact the river and floodplain connectivity, the impacts are already evident as several tributaries are getting dried during the non-monsoon months. Research limitations/implications – The information provided by the paper for GRB is significant for the understanding of the basin and to formulate integrated management and development plan of the basin. Significant changes have taken place in the GRB over the recent past and are still continuing. Because of the chosen river basin and the site-specific research approach, the research results may lack generalization. However, it provides a general framework of analysis which could be applied to other regions. Practical implications – River channels with their floodplains and adjoining ecosystems have to be addressed as interconnected ecological entity in a holistic way. This requires comprehensive observations of the river systems and catchment characteristics using long-term data. The paper could be used as the starting point in the development of management and development strategies for the basin. Originality/value – River and its floodplain offer multiple ecosystem services and deserve an integrated approach for their conservation and restoration. Conservation and protection of ecologically intact river-floodplain systems is extremely important and urgently needs integrated planning and management. This paper has adopted a integrated approach to study the integrity of river ecosystems and the potential pressures on them.


Sign in / Sign up

Export Citation Format

Share Document