Modeling the effects of land-use change on sediment yield in the upper Huaihe river basin, China

Author(s):  
Sicheng Wan ◽  
Qiongfang Li ◽  
Tao Cai ◽  
Pengcheng Li ◽  
Zhenhua Zou
2015 ◽  
Vol 737 ◽  
pp. 728-731 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

In this study, Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on water quantity in the upper Huaihe river basin above the Xixian hydrological controlling station with a catchment area of 10,190 km2 by the use of three-phase (1980s、1990s、2000s) land-use maps, soil type map (1:200000), 1980 to 2008 daily time series of rainfall from the upper Huaihe river basin. On the basis of the simulated time series of daily runoff, land-use change effects on spatio-temporal change patterns of runoff coefficients and runoff modules were investigated. The results revealed that under the same condition of soil texture and terrain slope the advantage for runoff generation and the sensitivity of rainfall-runoff relationship to rainfall descended by farmland, paddy field, woodland.The outputs could provide important references for soil and water conservation and river health protection in the upper stream of Huaihe river.


Author(s):  
M. Yu ◽  
Q. Li ◽  
G. Lu ◽  
H. Wang ◽  
P. Li

Abstract. To investigate the agricultural land-use change on flood regime, the upper Huaihe River basin above the Dapoling station was selected as the case study site. Based on topography, land-use, hydrological and meteorological data in 1990s and 2010s, the improved distributed Xinanjiang model, with potential evapotranspiration being computed by coupling a dual-source evapotranspiration model with a simplified plant growth model, was adopted to simulate the daily and hourly rainfall-runoff processes over 1990s and 2010s, and then the effects of land-use change on flood volume, flood peak, occurring time of flood peak, the percentage of surface runoff component were investigated respectively. The results was interesting and indicated that impacts of land-use change on flood characteristics varied significantly with land-use types. The outputs could provide valuable references for flood risk management and water resources management in the Huaihe River basin.


2013 ◽  
Vol 18 (11) ◽  
pp. 1464-1470 ◽  
Author(s):  
Qiongfang Li ◽  
Tao Cai ◽  
Meixiu Yu ◽  
Guobin Lu ◽  
Wei Xie ◽  
...  

2015 ◽  
Vol 737 ◽  
pp. 762-765 ◽  
Author(s):  
Yuan Yuan Han ◽  
Tao Cai

To investigate the impacts of land-use patterns on the sediment yield characteristics in the upper Huaihe River, Xixian hydrological controlling station was selected as the case study site. Soil and Water Assessment Tool (SWAT) model was used to simulate land-use change effects on sediment yield by the use of three-phase (1980s, 1990s and 2000s) land-use maps, soil type map (1:200000) and 1987 to 2008 daily time series of rainfall from the upper Huaihe River basin. On the basis of the simulated time series of daily sediment concentration, land-use change effects on spatio-temporal change patterns of soil erosion modulus. The results revealed that under the same condition of soil texture and terrain slope the advantage for sediment yield was descended by woodland, paddy field and farmland. The outputs of the paper could provide references for soil and water conservation and river health protection in the upper stream of Huaihe River.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1711 ◽  
Author(s):  
Franciane Mendonça dos Santos ◽  
Rodrigo Proença de Oliveira ◽  
José Augusto Di Lollo

The Soil and Water Assessment Tool (SWAT) is often used to evaluate the impacts of different land use scenarios on streamflow and sediment yield, but there is a need for some clear recommendations on how to select the parameter set that defines a given land use scenario and on what is the most appropriate methodology to change the selected parameters when describing possible future conditions. This paper reviews the SWAT formulation to identify the parameters that depend on the land use, performs a sensitivity analysis to determine the ones with larger impacts on the model results and discusses ways to consider future land use conditions. The case study is the Atibaia river basin, with 2838 km2 (São Paulo, Brazil). The parameters identified by sensitivity analysis with the largest impacts on streamflow and sediment yield were the initial curve number for moisture condition II (CN), maximum canopy storage for each land use (CANMX) and the cover and management factor (USLE_C). The identification and appropriate parameter change can provide real estimates of the magnitudes in the land use changes, which were verified in this study. Such information can be used as an instrument for proposing improvements in the basin’s environmental quality and management.


Sign in / Sign up

Export Citation Format

Share Document