Two-Degree-of-Freedom Congestion Control Strategy against Time Delay and Disturbance

Author(s):  
Hao Wang ◽  
Wei Wei ◽  
Yanhua Li ◽  
Chenda Liao ◽  
Yan Qiao ◽  
...  
2020 ◽  
Vol 53 (3-4) ◽  
pp. 691-697 ◽  
Author(s):  
Ziwei Li ◽  
Jianjun Bai ◽  
Hongbo Zou

This article proposes an improved two-degree-of-freedom Smith predictive control method for typical industrial control systems. Smith predictive control is a classic control strategy designed for systems with pure lag. As an extension of Smith predictive control, internal model control can solve the time-delay problem effectively and make the controller design simple. Based on the two control algorithms, an enhanced control method with modified control structure is developed in this paper. In the design scheme, the set-point tracking and the disturbance rejection characteristics are decoupled, such that the set-point tracking and disturbance rejection controllers can be designed independently to achieve better control performance. The obtained control strategy possesses simple and convenient parameter tuning procedures. The validity of the proposed scheme is verified through theoretical analysis and simulation comparison with other control methods, and the results indicate that the proposed strategy shows better performance on set-point tracking and disturbance rejection.


Author(s):  
Hachmia Faqihi ◽  
Khalid Benjelloun ◽  
Maarouf Saad ◽  
Mohammed Benbrahim ◽  
M. Nabil Kabbaj

<p>One of the most efficient approaches to control a multiple degree-of-freedom robot manipulator is the virtual decomposition control (VDC). However, the use of the re- gressor technique in the conventionnal VDC to estimate the unknown and uncertaities parameters present some limitations. In this paper, a new control strategy of n-DoF robot manipulator, refering to reorganizing the equation of the VDC using the time delay estimation (TDE) have been investigated. In the proposed controller, the VDC equations are rearranged using the TDE for unknown dynamic estimations. Hence, the decoupling dynamic model for the manipulator is established. The stability of the overall system is proved based on Lyapunov theory. The effectiveness of the proposed controller is proved via case study performed on 7-DoF robot manipulator and com- pared to the conventionnal Regressor-based VDC according to some evalution criteria. The results carry out the validity and efficiency of the proposed time delay estimation- based virtual decomposition controller (TD-VDC) approach.</p>


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zihan Wang ◽  
Jieqiong Xu ◽  
Shuai Wu ◽  
Quan Yuan

The stability of grazing bifurcation is lost in three ways through the local analysis of the near-grazing dynamics using the classical concept of discontinuity mappings in the two-degree-of-freedom vibroimpact system with symmetrical constraints. For this instability problem, a control strategy for the stability of grazing bifurcation is presented by controlling the persistence of local attractors near the grazing trajectory in this vibroimpact system with symmetrical constraints. Discrete-in-time feedback controllers designed on two Poincare sections are employed to retain the existence of an attractor near the grazing trajectory. The implementation relies on the stability criterion under which a local attractor persists near a grazing trajectory. Based on the stability criterion, the control region of the two parameters is obtained and the control strategy for the persistence of near-grazing attractors is designed accordingly. Especially, the chaos near codimension-two grazing bifurcation points was controlled by the control strategy. In the end, the results of numerical simulation are used to verify the feasibility of the control method.


Sign in / Sign up

Export Citation Format

Share Document