Video quality-maximizing resource allocation and scheduling with statistical delay guarantees

Author(s):  
Amin Abdel Khalek ◽  
Constantine Caramanis ◽  
Robert W. Heath
Author(s):  
Koné Kigninman Désiré ◽  
Eya Dhib ◽  
Nabil Tabbane ◽  
Olivier Asseu

Cloud gaming has become the new service provisioning prototype that hosts the video games in the cloud and broadcasts the interactive game streaming to the players through the Internet. Here, the cloud must use massive resources for video representation and its streaming when several simultaneous players reach a particular point. Alternatively, various players may have separate necessities on Quality-of Experience, like low delay, high-video quality, etc. The challenging task is providing better service by the fixed cloud resource. Hence, there is a necessity for an energy-aware multi-resource allocation in the cloud. This paper devises a Fractional Rider-Harmony search algorithm (Fractional Rider-HSA) for resource allocation in the cloud. The Fractional Rider-HSA combines fractional calculus, Rider Optimization algorithm (ROA), and HSA. Moreover, the fitness function, like mean opinion score (MOS), gaming experience loss, fairness, energy consumption, and network parameters, is considered to determine the optimal resource allocation. The proposed model produces the maximal MOS of 0.8961, maximal gaming experience loss (QE) of 0.998, maximal fairness of 0.9991, the minimum energy consumption of 0.3109, and minimal delay 0.2266, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Dongyul Lee ◽  
Chaewoo Lee

The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.


Author(s):  
Mahnaz Sinaie ◽  
Pin-Hsun Lin ◽  
Alessio Zappone ◽  
Paeiz Azmi ◽  
Eduard A. Jorswieck

Sign in / Sign up

Export Citation Format

Share Document