Energy and Quality Aware Multi-Objective Resource Allocation Algorithm in Cloud

Author(s):  
Koné Kigninman Désiré ◽  
Eya Dhib ◽  
Nabil Tabbane ◽  
Olivier Asseu

Cloud gaming has become the new service provisioning prototype that hosts the video games in the cloud and broadcasts the interactive game streaming to the players through the Internet. Here, the cloud must use massive resources for video representation and its streaming when several simultaneous players reach a particular point. Alternatively, various players may have separate necessities on Quality-of Experience, like low delay, high-video quality, etc. The challenging task is providing better service by the fixed cloud resource. Hence, there is a necessity for an energy-aware multi-resource allocation in the cloud. This paper devises a Fractional Rider-Harmony search algorithm (Fractional Rider-HSA) for resource allocation in the cloud. The Fractional Rider-HSA combines fractional calculus, Rider Optimization algorithm (ROA), and HSA. Moreover, the fitness function, like mean opinion score (MOS), gaming experience loss, fairness, energy consumption, and network parameters, is considered to determine the optimal resource allocation. The proposed model produces the maximal MOS of 0.8961, maximal gaming experience loss (QE) of 0.998, maximal fairness of 0.9991, the minimum energy consumption of 0.3109, and minimal delay 0.2266, respectively.

2021 ◽  
pp. 1-18
Author(s):  
Koné Kigninman Désiré ◽  
Eya Dhib ◽  
Nabil Tabbane ◽  
Olivier Asseu

Cloud gaming is an innovative model that congregates video games. The user may have different Quality-of-Experience (QoE), which is a term used to measure a user’s level of satisfaction and enjoyment for a particular service. To guarantee general satisfaction for all users with limited cloud resources, it becomes a major issue in the cloud. This paper leverages a game theory in the cloud gaming model with resource optimization to discover optimal solutions to resolve resource allocation. The Rider-based harmony search algorithm (Rider-based HSA), which is the combination of Rider optimization algorithm (ROA) and Harmony search algorithm (HSA), is proposed for resource allocation to improve the cloud computing system’s efficiency. The fitness function is newly devised considering certain QoE parameters, which involves fairness index, Quantified experience of players (QE), and Mean Opinion Score (MOS). The proposed Rider-based HSA showed better performance compared to Potential game-based optimization algorithm, Proactive resource allocation algorithm, QoE-aware resource allocation algorithm, Distributed algorithm, and Yusen Li et al., with maximal fairness of 0.999, maximal MOS of 0.873, and maximal QE of 1.


2020 ◽  
Vol 10 (7) ◽  
pp. 2323
Author(s):  
T. Renugadevi ◽  
K. Geetha ◽  
K. Muthukumar ◽  
Zong Woo Geem

Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.


2022 ◽  
Vol 11 (2) ◽  
pp. 113-126
Author(s):  
Amol C. Adamuthe ◽  
Smita M. Kagwade

Data Center energy usage has risen dramatically because of the rapid growth and demand for cloud computing. This excessive energy usage is a challenge from an economic and environmental point. Virtual Machine Placement (VMP) along with virtualization technologies is widely used to manage power utilization in data centers. The assignment of virtual machines to physical machines affects energy consumption. VMP is a process of mapping VMs onto a set of PMs in a data center to minimize total power consumption and maximize resource utilization. The VMP is an NP-hard problem due to its constraints and huge combinations. In this paper, we formulated the problem as a single objective optimization problem in which the objective is to minimize the energy consumption in cloud data centers. The main contribution of this paper is hybrid and adaptive harmony search algorithm for optimal placements of VMs to PMs. HSA with adaptive PAR settings, simulated annealing and local search strategy aims at minimizing energy consumption in cloud data centers with satisfying given constraints. Experiments are conducted to validate the performance of these variations. Results show that these hybrid HSA variations produce better results than basic HSA and adaptive HSA. Hybrid HS with simulated annealing, and local search strategy gives better results than other variants for 80 percent datasets.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Meiju Li ◽  
Xiujuan Du ◽  
Chunyan Peng

With the development of wireless networks and increasingly interest of people in underwater resources and environment, UWSNs are being paid more and more attention. Because of the characteristics of underwater channel and acoustic signal, the protocols used in the terrestrial networks cannot be directly used in UWSNs. In this paper, a reliable and energy-efficient routing protocol based on SHS and coding, called RSHSC, is proposed. Firstly, regular nodes are assigned to cluster heads according to simplified harmony search algorithm. Secondly, partial network encoding is introduced and the next two-hop information is considered when data packets are transmitted to sink nodes from the source node. Only the best next-hop forwards data packets. All data packets from neighbor nodes are used for decoding. Thirdly, two schemes of updating routing are designed and compared. Lastly, extensive simulations prove RSHSC is effective in improving reliability and decreasing energy consumption.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xujie Li ◽  
Lingjie Zhou ◽  
Xing Chen ◽  
Ailin Qi ◽  
Chenming Li ◽  
...  

In this paper, the resource allocation problem for device-to-device (D2D) communications underlaying cellular networks is formulated and analyzed. In our scenario, we consider that the number of D2D user equipment (DUE) pairs is far larger than that of cellular user equipments (CUEs). Meanwhile, the resource blocks are divided into two types: resource blocks for CUEs and the ones for CUEs and DUEs. Firstly, the system model is presented, and the resource allocation problem is formulated. Then, a resource allocation scheme based on the genetic algorithm is proposed. To overcome the problem that the dedicated resource is not fully shared in the genetic algorithm, an improved harmony search algorithm is proposed for resource allocation. Finally, the analysis and simulation results show that the performances of the proposed genetic algorithm and the improved harmony search algorithm outperform than that of the random algorithm and are very close to that of the exhaustive algorithm. This result can provide an effective optimization for resource allocation of D2D communications.


2013 ◽  
Vol 32 (9) ◽  
pp. 2412-2417
Author(s):  
Yue-hong LI ◽  
Pin WAN ◽  
Yong-hua WANG ◽  
Jian YANG ◽  
Qin DENG

Sign in / Sign up

Export Citation Format

Share Document