Neuro-Fuzzy Based Handover Authentication Protocol for Ultra Dense 5G Networks

Author(s):  
Vincent Omollo Nyangaresi ◽  
Anthony Joachim Rodrigues ◽  
Silvance Onyango Abeka
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junfeng Miao ◽  
Zhaoshun Wang ◽  
Xue Miao ◽  
Longyue Xing

When mobile network enters 5G era, 5G networks have a series of unparalleled advantages. Therefore, the application of 5G network technology in the Internet of Vehicles (IoV) can promote more intelligently vehicular networks and more efficiently vehicular information transmission. However, with the combination of 5G networks and vehicular networks technology, it requires safe and reliable authentication and low computation overhead. Therefore, it is a challenge to achieve such low latency, security, and high mobility. In this paper, we propose a secure and efficient lightweight authentication protocol for vehicle group. The scheme is based on the extended chaotic map to achieve authentication, and the Chinese remainder theorem distributes group keys. Scyther is used to verify the security of the scheme, and the verification results show that the security of the scheme can be guaranteed. In addition, through security analysis, the scheme can not only effectively resist various attacks but also guarantee security requirements such as anonymity and unlinkability. Finally, by performance analysis and comparison, our scheme has less computation and communication overhead.


2013 ◽  
Vol 401-403 ◽  
pp. 1864-1867 ◽  
Author(s):  
Li Ling Cao ◽  
Wan Cheng Ge

The existing Extensible Authentication Protocol (EAP) based handover authentication schemes have show robust security features especially the Qi Jing et al.'s design, which not only meets the essential security requirements in handover authentication but also achieves privacy preservation. However, it still suffers pitfalls in the process of authentication. The main idea of this paper is to extend the work by Qi Jing et al. and particularly focus on the formal analysis using extending BAN logic which is more concise yet practical to use on PKI-based protocols.


Author(s):  
Seunghwan Son ◽  
Joonyoung Lee ◽  
Yohan Park ◽  
Youngho Park ◽  
Ashok Kumar Das

Sign in / Sign up

Export Citation Format

Share Document