Field Testing of Manufacturable Advanced Low-Cost Receiver for Parabolic Trough Solar Power

Author(s):  
Oliver Brambles ◽  
Kenneth A. Ritter ◽  
Leif Johnson ◽  
Troy McBride ◽  
Scott Snyder ◽  
...  
2019 ◽  
Author(s):  
Joel Stettenheim ◽  
◽  
Troy McBride ◽  
Oliver Brambles ◽  
Leif Johnson ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6142
Author(s):  
Richard Felsberger ◽  
Armin Buchroithner ◽  
Bernhard Gerl ◽  
Hannes Wegleiter

In the field of solar power generation, concentrator systems, such as concentrator photovoltaics (CPV) or concentrated solar power (CSP), are subject of intensive research activity, due to high efficiencies in electrical power generation compared to conventional photovoltaics (PV) and low-cost energy storage on the thermal side. Even though the idea of combining the thermal and electrical part in one absorber is obvious, very few hybrid systems (i.e., concentrator photovoltaics-thermal systems (CPV-T)) are either described in literature or commercially available. This paper features the conversion of a commercial thermal parabolic trough collector to a CPV-T hybrid system using multi-junction PV cells. The design process is described in detail starting with the selection of suitable PV cells, elaborating optical and mechanical system requirements, heat sink design and final assembly. Feasibility is proven by practical tests involving maximum power point tracking as well as empirical determination of heat generation and measurement results are presented.


Solar Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 551-564
Author(s):  
Linrui Ma ◽  
Tong Zhang ◽  
Xuelin Zhang ◽  
Bin Wang ◽  
Shengwei Mei ◽  
...  

2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking > north-south Earth’s axis tracking > north-south tilt tracking (β = 15°) > north-south tilt tracking (β = 45) > north-south horizontal tracking > east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Maya Livshits ◽  
Abraham Kribus

Solar heat at moderate temperatures around 200 °C can be utilized for augmentation of conventional steam-injection gas turbine power plants. Solar concentrating collectors for such an application can be simpler and less expensive than collectors used for current solar power plants. We perform a thermodynamic analysis of this hybrid cycle, focusing on improved modeling of the combustor and the water recovery condenser. The cycle's water consumption is derived and compared to other power plant technologies. The analysis shows that the performance of the hybrid cycle under the improved model is similar to the results of the previous simplified analysis. The water consumption of the cycle is negative due to water production by combustion, in contrast to other solar power plants that have positive water consumption. The size of the needed condenser is large, and a very low-cost condenser technology is required to make water recovery in the solar STIG cycle technically and economically feasible.


Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 589-603 ◽  
Author(s):  
Davide Ferruzza ◽  
Monika Topel ◽  
Björn Laumert ◽  
Fredrik Haglind

Author(s):  
Valentina A. ◽  
Carmelo E. ◽  
Giuseppe M. ◽  
Rosa Di ◽  
Fabrizio Girardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document