Design of X-Ku band broadband high-performance and high-integration T / R module

Author(s):  
Yong-feng Gui ◽  
Lai-fu Jin ◽  
De-zhi Ding ◽  
Qi-lin Xie ◽  
Shi-wei Wu ◽  
...  
Keyword(s):  
2014 ◽  
Vol 2 (40) ◽  
pp. 16905-16914 ◽  
Author(s):  
Jun Xiang ◽  
Jiale Li ◽  
Xionghui Zhang ◽  
Qin Ye ◽  
Jiahuan Xu ◽  
...  

Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles (CNF–M) exhibit excellent electromagnetic wave absorption properties from the C-band to the Ku-band.


2021 ◽  
Author(s):  
Sabir Hussain ◽  
Ghulam Jaffer

Abstract The need for broadband data has increased speedily but in underserved rural areas, the mobile connectivity of 3G and LTE is still a significant challenge. By looking at the historical trend, the data traffic and the internet are still expected to grow in these areas [1]. The next generation of satellites is trying to decrease the cost per MB having the advantage of higher throughput and availability. To maintain the performance of the link, choosing an appropriate frequency is evident. A multi-beam satellite system can fulfill the demand and performance over a coverage area. The high throughput satellites (HTS) fulfill this requirement using C and Ku bands. In this paper, we present the benefits of using Ku-band on the user site and the composite of C and Ku bands on the gateway site. This configuration has proved to be a cost-efficient solution with high performance over the traditional straight configuration. The data rate is improved five times both on upstream and downstream as compared to the existing available FSS system. Moreover, it has got an advantage to Ku-band user that they would enjoy the significant improvement in the performance without upgrading their systems.


2021 ◽  
Author(s):  
Mostafa Ashry ◽  
Wenbin Shen ◽  
Ziyu Shen ◽  
Hussein A. Abd-Elmotaal ◽  
Abdelrahim ruby ◽  
...  

<p>According to general relativity theory, a precise clock runs at different rates at positions with different geopotentials. Atomic Clock Ensemble in Space (ACES) is a mission using high-performance clocks and links to test fundamental laws of physics in space. The ACES microwave link (MWL) will make the ACES clock signal available to ground laboratories equipped with atomic clocks. The ACES-MWL will allow space-to-ground and ground-to-ground comparisons of atomic frequency standards. This study aims to apply the tri-frequency combination (TFC) method to determine the geopotential difference between the ACES and a first order triangulation station in Egypt. The TFC uses the uplink of carrier frequency 13.475 GHz (Ku band) and downlinks of carrier frequencies 14.70333 GHz (Ku band) and 2248 MHz (S-band) to transfer time and frequency. Here we present a simulation experiment. In this experiment, we use the international space station (ISS) orbit data, ionosphere and troposphere models, regional gravitational potential and geoid for Africa, solid Earth tide model, and simulated clock data by a conventionally accepted stochastic noises model. The scientific object requires stabilities of atomic clocks at least 3 × 10 <sup>−16</sup> /day, so we must consider various effects, including the Doppler effect, second-order Doppler effect, atmospheric frequency shift, tidal effects, refraction caused by the atmosphere, and Shapiro effect, with accuracy levels of decimetres. This study is supported by the National Natural Science Foundations of China (NSFC) under Grants 42030105, 41721003, 41804012, 41631072, 41874023, Space Station Project (2020)228, and the Natural Science Foundation of Hubei Province of China under Grant 2019CFB611.</p>


2018 ◽  
Vol 10 (2) ◽  
pp. 149-159 ◽  
Author(s):  
Jose A. Encinar ◽  
Rafael Florencio ◽  
Manuel Arrebola ◽  
Miguel Alejandro Salas Natera ◽  
Mariano Barba ◽  
...  

A 1.1-m reflectarray antenna has been designed, manufactured, and tested to fulfill the requirements of a satellite antenna in Ku-band that provides South-American coverage in Tx and Rx. The reflectarray cells consist of four dipoles for each polarization in two dielectric layers, selected because of their simplicity and high performance. The dipole dimensions are optimized in all the reflectarray cells to accomplish the prescribed radiation patterns, by iteratively calling an analysis routine based on method of moments in spectral domain and local periodicity. The measured radiation patterns of the manufactured antenna have been satisfactorily compared with simulations and with a three-layer reflectarray previously designed, manufactured, and tested for the same mission.


2012 ◽  
Vol 54 (6) ◽  
pp. 1514-1516 ◽  
Author(s):  
Qirong Li ◽  
Xubo Guo ◽  
Bisong Cao ◽  
Xiaoping Zhang ◽  
Bin Wei ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document