A Welding Temperature Determination Method of Low Carbon Steel and Stainless Steel Welded Joint by Rotary Friction Welding Process

Author(s):  
Ngon Dang Thien ◽  
Dat Le Quang ◽  
Toan Phan Van ◽  
Tuan Tao Anh
2019 ◽  
Vol 9 (4) ◽  
pp. 385-400
Author(s):  
Kanwal Jit Singh

Purpose Nowadays, a rotary friction welding method is accepted in many industries, particularly for joining dissimilar materials as a mass production process. It is due to advantages like less material waste, low production time and low energy expenditure. The effect of the change in carbon contents in steel is studied experimentally in the rotary friction welding process, and a statistical model is developed. The Grey Taguchi method gives the single parameters optimization for all output responses. The paper aims to discuss these issues. Design/methodology/approach An experimental setup was designed and produced to achieve the multi-response in single optimum parameters through Grey relational analysis. A continuous/direct drive rotary friction welding process is chosen in which transition from friction to the forging stage can be achieved automatically by applying a break. In this experimentation, high carbon and low carbon work-pieces with different carbon percentage were welded with rotary friction welding. Response tensile strength and micro-hardness of the design of the experiment are used to analyze the results. Findings The optimization of parameters has been performed with Grey relational analysis, and optimum parameters are friction pressure 40 kg/cm2, forging pressure 100 kg/cm2 and speed 1,120 rpm. GRA optimum parameters give 56.04 and 82.16 percent improvement in Tensile strength and micro-hardness, respectively. Practical implications High carbon steel (En-31) and low carbon steel (SAE-1020) are used in so many industrial applications. These materials are mostly used in the process like manufacturing, metallurgy, machinery, agricultural, etc. These practical applications have brought forward definite and notable economic benefits. Originality/value It provides a new framework to investigate the problems where multiple input machining variables and various output responses are obtained in single optimized parameters.


2019 ◽  
Vol 16 ◽  
pp. 766-775 ◽  
Author(s):  
Siddique Ahmed Ghias ◽  
Vijaya Ramnath.B ◽  
Elanchezhian.C ◽  
Siddhartha.D ◽  
Ramanan.N

2015 ◽  
Vol 2015 (0) ◽  
pp. _J0470105--_J0470105-
Author(s):  
Masaaki KIMURA ◽  
Tsukasa IIJIMA ◽  
Masahiro KUSAKA ◽  
Koichi KAIZU ◽  
Akiyoshi FUJI ◽  
...  

Author(s):  
P. Senthilkumar

The effect of welding current on the tensile properties of low carbon steel welded joint was investigated in this research. In this work mild steel plates were joined by shielded metal arc welding process which is also known as manual metal arc welding used to examine optimum welding current. The welded samples were cut and machined to standard configurations for tensile tests. It was concluded that variation of current affect the tensile properties of the low carbon steel welded joint. As the current increases from 80A to 110A, the ultimate tensile strengths and yeild strength increases. The percentage elongation decreases with increase in welding current but increases at the welding current of 110A.


Author(s):  
Gurinder Singh Brar ◽  
Gurdeep Singh

In this paper a three-dimensional welding simulation was carried out by commercially available finite element software to predict temperature and the residual stress distributions in V-butt welded joint of two dissimilar pipes. Low carbon steel and stainless steel pipe welding is widely used in a variety of engineering applications such as oil and gas industries, nuclear and thermal power plants and chemical plants. Inelastic deformations during heat treatment are the major cause of residual stress. Heat during welding causes localized expansion as some areas cool and contract more than others. The stress variation in the weldment can be very complex and can vary between compressive and tensile stresses. The mismatching (in the weld in general) occurs due to joint geometry and plate thickness. Welding procedures and degree of restraints also influences the residual stress distributions. To understand the behavior of residual stress, two dissimilar pipes one of stainless steel and another of low carbon steel with outer diameter of 356 mm and internal diameter 240 mm were butt welded. The welding was completed in three passes. The first pass was performed by Manual TIG Welding using ER 309L as a filler metal. The remaining weld passes were welded by Manual Metal Arc Welding (MMAW) and ER 309L-16 was used as a filler metal. During each pass, attained peak temperature and variation of residual stresses and magnitude of axial stress and hoop stress in pipes has been calculated. The results obtained by finite element method agree well with those from Ultrasonic technique (UT) and Hole Drilling Strain-Gauge (HDSG) as published by Akhshik and Moharrami (2009) for the improvement in accuracy of the measurements of residual stresses.


2020 ◽  
Vol 30 (7) ◽  
pp. 6-11
Author(s):  
Tien Duong Nguyen

This paper investigates and determines residual stress and deformation of butt welded joint between two plates of low carbon steel and stainless steel. Based on the theoretical basis of the virtual force method [1-3], this study has constructed the formulas to calculate the residual stress and deformation in fusion welding of two dissimilar materials for butt joint and single-pass weld. The residual stresses and deformations in the butt-welded joint of two plates of 5 mm thickness, beveled edge, single-pass weld between low carbon steel and stainless steel are determined and compared to show the difference of residual stress and deformation in each plate. These results are also compared with the butt welded joint of two low carbon steel plates.


Sign in / Sign up

Export Citation Format

Share Document