Large Eddy Simulations of Bluff-Body Stabilized Turbulent Flames and Gas Turbine Combustors

Author(s):  
S. James ◽  
J. Zhu ◽  
M. Anand ◽  
B. Sekar
Author(s):  
Krishna Kant Agarwal ◽  
Srinivasa Rao Konakalla ◽  
Senthamil Selvan

Large Eddy Simulations (LES) is increasingly becoming a feasible tool for industrial design purposes on account of ongoing advancements in computational power. It is a promising arena in the field of computational fluid dynamics where more details of flow-turbulence are explicitly captured and lesser are modeled as compared to the traditional Reynolds-average (RANS) approaches. For the gas turbine combustors particularly, it is a promising tool for better predictions of reactants mixing and hence the combustion, flame shape and temperature profiles. Also, as inherent unsteady nature of the flow is captured, it can predict combustion dynamics due to heat-release (and hence pressure) fluctuations. The main factor for performing a successful and reliable LES is to find an appropriate filter size for different regions of the CFD domain. This filter size is typically same as the CFD mesh size and turbulent scales larger than this are explicitly solved in LES. In industrial gas turbine combustors, due to complex geometry and numerous small cooling flow passages, unnecessary mesh refinement may make the mesh size prohibitive for a time-marching LES simulation. Hence, judicious selection of important flow features and geometry is important. Still not much experience is available on the quantification of LES meshing requirements for practical gas turbine combustors. In this study, two different LES meshing approaches, namely one based on Taylor length scales and other based on theoretical turbulence energy spectrum are compared for various medium scale gas turbine combustors. While the former approach requires a prior RANS simulation and provides a spatial distribution of the grid size, the latter just requires mean flow properties and global length scale at various inlets but produces only a global mesh value. It is found for all combustor designs under study that the two approaches agree well with each other for predicting mesh size requirements for LES where 85–90% of turbulent length scales are captured. This helps towards standardizing LES meshing procedure in industrial scenarios and helps a user to choose meshing option based on the level of details needed and time-resource constraints.


Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


Author(s):  
M. P. Sitte ◽  
C. Turquand d’Auzay ◽  
A. Giusti ◽  
E. Mastorakos ◽  
N. Chakraborty

Abstract The modelling of scalar dissipation rate in conditional methods for large-eddy simulations is investigated based on a priori direct numerical simulation analysis using a dataset representing an igniting non-premixed planar jet flame. The main objective is to provide a comprehensive assessment of models typically used for large-eddy simulations of non-premixed turbulent flames with the Conditional Moment Closure combustion model. The linear relaxation model gives a good estimate of the Favre-filtered scalar dissipation rate throughout the ignition with a value of the related constant close to the one deduced from theoretical arguments. Such value of the constant is one order of magnitude higher than typical values used in Reynolds-averaged approaches. The amplitude mapping closure model provides a satisfactory estimate of the conditionally filtered scalar dissipation rate even in flows characterised by shear driven turbulence and strong density variation.


Sign in / Sign up

Export Citation Format

Share Document