Can Water Dilution Avoid Flashback on a Hydrogen Enriched Micro Gas Turbine Combustion? A Large Eddy Simulations Study

2021 ◽  
Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre B\xe9nard ◽  
Ward De Paepe
AIAA Journal ◽  
2006 ◽  
Vol 44 (4) ◽  
pp. 674-686 ◽  
Author(s):  
S. James ◽  
J. Zhu ◽  
M. S. Anand

Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Especially in a decentralized production with small-scale cogeneration, micro Gas Turbines (mGTs) offer great advantages related to their high adaptability and flexibility, in terms of operation and fuel. Hydrogen (or hydrogen enriched methane) combustion is well-known to lead to flame and combustion instabilities. The high temperatures and reaction rates reached in the combustor can potentially lead to flashback. In the past, combustion air humidification (i.e. water addition) has proven effective to reduce temperatures and reaction rates, leading to significant NOx emission reductions. Therefore, combustion air humidification can open a path to stabilize hydrogen combustion in a classical mGT combustor. However accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. In this framework, this paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without combustion air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations (LES) analysis. In a first step, the necessary minimal water dilution, to reach stable and low emissions combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched methane/air combustion cases. The results of this comparison show that, for the hydrogen enriched combustion, the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, the feasibility and flexibility of humidified hydrogen enriched methane/air combustion in an industrial mGT combustor have been demonstrated by performing high fidelity LES on a 3D geometry. Results show that steam dilution helped to lower the reactivity of hydrogen, and thus prevents flashback, enabling the use of hydrogen blends in the mGT at similar CO levels, compared to the reference case. These results will help to design future combustor towards more stability.


Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Hydrogen combustion is well-known to lead to combustion instabilities. The high temperatures and reaction rates can potentially lead to flashback. In the past, combustion air humidification has proven effective to reduce temperatures and reaction rates. Therefore, humidification can open a path to stabilize hydrogen combustion. However, accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. This paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations analysis. In a first step, the necessary minimal water dilution, to reach stable combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched cases. The results of this comparison show that the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, high fidelity LES on the 3D geometry are performed to show that water dilution helped to lower the temperature and reaction rate of hydrogen at same levels as reference case, and thus prevents flashback, enabling the use of hydrogen blends in the mGT.


Sign in / Sign up

Export Citation Format

Share Document