Optimal Charging and allocation Of Electric Vehicles In Distribution Systems

Author(s):  
Yatish Ram Kumar Darla ◽  
Anusha Basivireddy ◽  
Augusteen Watson Albert
2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


2020 ◽  
Vol 12 (15) ◽  
pp. 6046
Author(s):  
Ahad Abessi ◽  
Elham Shirazi ◽  
Shahram Jadid ◽  
Miadreza Shafie-khah

Nowadays, due to the increasing number of disasters, improving distribution system resiliency is a new challenging issue for researchers. One of the main methods for improving the resiliency in distribution systems is to supply critical loads after disasters during the power outage and before system restorations. In this paper, a “Sustainable and resilient smart house” is introduced for the first time by using plug-in hybrid electric vehicles (PHEVs). PHEVs have the ability to use their fuel for generating electricity in emergency situations as the Vehicle to Grid (V2G) scheme. This ability, besides smart house control management, provides an opportunity for distribution system operators to use their extra energy for supplying a critical load in the system. The proposed control strategy in this paper is dedicated to a short duration power outage, which includes a large percent of the events. Then, improvement of the resiliency of distribution systems is investigated through supplying smart residential customers and injecting extra power to the main grid. A novel formulation is proposed for increasing the injected power of the smart house to the main grid using PHEVs. The effectiveness of the proposed method in increasing power injection during power outages is shown in simulation results.


Sign in / Sign up

Export Citation Format

Share Document