State and Disturbance Estimation Based Sliding Mode Control for Antilock Braking Systems

Author(s):  
Vijayraj Wanaskar ◽  
P. D. Shendge ◽  
S. B. Phadke
2018 ◽  
Vol 41 (1) ◽  
pp. 276-284 ◽  
Author(s):  
Jianguo Guo ◽  
Yuchao Liu ◽  
Jun Zhou

An adaptive sliding mode control (ASMC) approach for a second-order system based on an extended disturbance observer (EDO) is proposed in this paper for systems with mismatched uncertainties. The EDO-based ASMC method is investigated to eliminate the effect of mismatched disturbance by using a novel adaptive sliding surface consisting of the disturbance estimation. The proposed method exhibits the following two attractive features: Firstly, the proposed adaptive sliding mode with disturbance estimation is insensitive to the mismatched disturbance; that is, the asymptotical stability of the adaptive sliding mode can be guaranteed in the presence of the disturbance estimation error of the EDO. Secondly, the chattering in traditional sliding mode control methods is eliminated by using an adaptive term the adaptive parameter. Compared with the disturbance-observer-based sliding mode control and the EDO-based modified sliding mode control method, numerical simulation results and application examples show that the proposed approach is robust, has the best dynamic performance and eliminates chattering.


2021 ◽  
Vol 11 (17) ◽  
pp. 8158
Author(s):  
Duc Giap Nguyen ◽  
Duc Thien Tran ◽  
Kyoung Kwan Ahn

This work presents a new disturbance observer-based chattering-attenuated terminal sliding mode control for a class of nonlinear systems in the presence of both mismatched and matched disturbances. A nonlinear disturbance observer is typically employed to accurately estimate mismatched disturbances. In this study, a terminal sliding mode control was designed, based on the disturbance estimation results, to counter the effects of disturbances and ultimately stabilize the target system. The utilization of a chattering-attenuated full-order terminal sliding mode structure satisfactorily resolves both chattering and singularity problems in controller design. It was shown by theoretical analyses that both the disturbance estimation error and the system state converge to the equilibrium point in finite time. Two simulation studies, namely a numerical example and an application to an electro hydrostatic actuator system, were conducted to examine the characteristics and to verify the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document