Hovering Drones-Based FSO Technology In Weak Atmospheric Turbulence With Pointing Error

Author(s):  
Abdullah Jameel Mahdi ◽  
With Jalil Mazher ◽  
Osman Nuri Ucan
2019 ◽  
Vol 9 (18) ◽  
pp. 3724 ◽  
Author(s):  
Jiang ◽  
Zhao ◽  
Liu ◽  
Deng ◽  
Luo ◽  
...  

The improvement for hybrid radio frequency–free space optical (RF–FSO) communication system in wireless optical communications has acquired growing interests in recent years, but rarely improvement is based on hybrid modulation. Therefore, we conduct a research on end-to-end mixed RF–FSO system with the hybrid pulse position modulation–binary phase shift keying–subcarrier intensity modulation (PPM–BPSK–SIM) scheme. The RF link obeys Rayleigh distribution and the FSO link experiences Gamma–Gamma distribution. The average bit error rate (BER) for various PPM–BPSK–SIM schemes has been derived with consideration of atmospheric turbulence influence and pointing error condition. The outage probability and the average channel capacity of the system are discussed as well. Simulation results indicate that the pointing error aggravates the influence of atmospheric turbulence on the channel capacity, and the RF–FSO systematic performance is improved obviously while adopting PPM–BPSK–SIM under strong turbulence and severe pointing error conditions, especially, when the system average symbol length is greater than eight.


Author(s):  
Maliha Sultana ◽  
Agnila Barua ◽  
Jobaida Akhtar ◽  
Mohammad Istiaque Reja

Free space optical (FSO) communication systems which are deployed for last mile access, being considered as a suitable alternative technology for optical fiber networks. It is one of the emerging technologies for broadband wireless connectivity which has also been receiving growing attention due to high data rate transmission capability with low installation cost and license free spectrum. However, the widespread use of FSO technology has been hampered by the randomly time varying characteristics of propagation path mainly due to atmospheric turbulence, sensitivity to diverse weather conditions and the nonlinear responsivity of laser diode. This paper presents the performance investigation of an OFDM-FSO system over atmospheric turbulence channels under diverse weather conditions of Bangladesh. The channel is modeled with gamma-gamma distribution using 16-QAM modulation format and 4×4 multiple transceiver FSO system. All possible challenges are imposed on the system performance such as atmospheric attenuation, turbulence, pointing error, geometric loss etc. The refractive index structure parameter and atmospheric attenuation coefficient for different weather conditions are calculated by using the data, collected from Bangladesh Meteorological Department. The acquired results can be fruitful for scheming, forecasting and assessing the OFDM-FSO system’s ability to transmit wireless services over turbulent FSO links under actual conditions of Bangladesh.


2017 ◽  
Vol 44 (9) ◽  
pp. 0906001
Author(s):  
赵静 Zhao Jing ◽  
赵尚弘 Zhao Shanghong ◽  
赵卫虎 Zhao Weihu ◽  
王翔 Wang Xiang ◽  
陈柯帆 Chen Kefan

Sign in / Sign up

Export Citation Format

Share Document