Applied Study of Energy Saving, Voltage Drop Reducing Technically Using Reactive Power Compensation and Cable Resizing in Gaza Electrical Grid and its Program Simulation Quality Improvement

Author(s):  
Hussam Awwad
2014 ◽  
Vol 536-537 ◽  
pp. 1510-1513
Author(s):  
Xiao Ming Wang ◽  
Qi Zhang ◽  
Bin Qian

In the high-voltage direct current transmission system, the difference value between the landing phase voltage and DC transmission system commutation failure of the critical voltage drop value, as system occurred in the critical value of commutation failure. When commutation voltage lower than the critical value would reduce arc Angle, caused by commutation failure。Therefore, by using the method of reactive power compensation to keep converter bus voltage stability, can avoid commutation failure.


2012 ◽  
Vol 608-609 ◽  
pp. 1151-1155 ◽  
Author(s):  
Xiao Hua Yuan ◽  
Xian Bin Dai

The alternator output power in the power system can be divided into active and reactive power. The active power (in kW) is that part of the electrical energy for doing work and heat loss, such as the conversion of mechanical energy, heat, light. The reactive power (in kVar) is that part of the electrical energy for the exchange of electric and magnetic fields in the circuit, such as transformers, motors, through the magnetic field can be passed to convert electrical energy; transmission lines in cable systems and a variety of load reactance (inductance and capacitance), and consumption of reactive power. With the rapid development of power system to study how to reduce energy loss in the power system is a very meaningful. In this paper, The Shizuishan plant desulfurization project as an example, illustrates the shunt capacitor reactive power compensation of the power system energy saving.


2021 ◽  
Vol 13 (4) ◽  
pp. 267-272
Author(s):  
M. M. Sultanov ◽  
A. V. Strizhichenko ◽  
I. A. Boldyrev ◽  
O. I. Zhelyaskova ◽  
E. A. Voloshin ◽  
...  

Reactive power in the power system negatively affects the operating mode of the electric network, additionally loading high-voltage lines and transformers, which leads to an increase in power losses, as well as to an increase in voltage drops. The influence of active and reactive power components of voltage in the network nodes is different and is overwhelmingly determined by the ratio of active and reactive components of the resistance elements of the electric system. In high-voltage networks, the reactive component of the resistance significantly exceeds the active component, and therefore the flow of reactive current through the network leads to a greater voltage drop than the flow of the active component of the current. The transfer of reactive power can lead to exceeding the normalized voltage range in the load nodes. To reduce power losses and voltage drop in the elements of the electric network, synchronous compensators (SC), static capacitor banks (SCB), static thyristor compensators (STC), controlled shunt reactors (CSR) can be used. The cost of production and transmission of active and reactive power are different, and when choosing the power of reactive power compensation means, it is necessary to take into account the costs and compare them with the resulting effect, which differs for large and small values of reactive power when this is reduced by the same amount. To assess the feasibility of application of compensatory devices, and to choose their type and locations of installation, relevant calculations are required. An empirical criterion is proposed for preliminary assessment of the technical feasibility of reactive power compensation. It enables to identify the network sections and nodes, which require reactive power compensation and should be considered in greater detail.


Author(s):  
Waleed Khalid Shakir Al-Jubori ◽  
Ali Nasser Hussain

The distribution system represents the connection between consumers and the entire power network. The radial structure is preferred for distribution system due to its simple design and low cost. The electrical distribution system suffers from problems of rising power losses higher than the transmission system and voltage drop. One of the important solutions to improve the voltage profile and to reduce the electrical distribution system losses is the reactive power compensation which is based on the optimum choice of position and capacitor size in the network. In this paper, different models of electrical loads such as constant power(P), constant current(I), constant impedance(Z), and composite (ZIP) model are implemented with comparisons between them in order to identify the most effective load type that produces the optimal settlement for alleged loss reduction ,enhancement of the voltage profile, and cost savings. To minimize search space, Dolphin Optimization Algorithm (DOA) is applied for selecting the size and location of capacitors. Two case studies (IEEE 16- bus and 33- bus) are employed to evaluate the different load models with optimal reactive power compensation. The results of comparison between the different load models show that ZIP model is the best to produce the optimum solution for capacitor position and size. In addition, comparison of results with literature works are done and showed that DOA is the most robust among other algorithms to achieve the optimum solution for voltage profile enhancement significant reduction of losses, and saving cost.


2020 ◽  
Vol 64 (188) ◽  
pp. 129-135
Author(s):  
Andrii M. Mukha ◽  
Oleh I. Bondarr

This paper deals with the problems of power supply efficiency for non-traction railway customers. Unlike public distribution networks, the non-traction power supply network is within the zone of influence of electromagnetic fields and the conductive influence of the distorted traction current. As a result, poor power quality and additional losses are typical for non-traction railway networks. Subsequently, conflicts due to the low quality of electricity may arise between the railway and its customers powered by the distribution networks of the railway. The influence of a reactive power compensation device on the voltage drop in a non-traction power line is investigated in the article. The implementation of reactive power compensation allows voltage losses during its transmission to the final consumer to be reduced by almost 5% and electricity losses by 3%. Keywords: non-traction consumer, power factor corrector, reactive power compensator, graph of electric network, nodal analysis


Sign in / Sign up

Export Citation Format

Share Document