Design of modified geometry Sierpinski carpet fractal antenna array for wireless communication

Author(s):  
D. S. Sagne ◽  
R. S. Batra ◽  
P. L. Zade
2021 ◽  
Vol 9 (17) ◽  
pp. 4-16
Author(s):  
Pablo Lupera Morillo ◽  
Gary Flores ◽  
Amanda Montaluisa

The use of multifunctional devices increases day by day. Mentioned devices, as smart tv, need appropriate and unified antennas which can meet required frequencies. Therefore, in this paper, a Sierpinski carpet microstrip fractal antenna in the second iteration is designed and fabricated for Digital Tv in UHF band and wireless wideband networks. It was verified that that the design of a fractal antenna based on the Sierpinski carpet is possible from a rectangular patch on iteration 0; however, it must be taken into account that the patch design must be carried out at a specific resonance frequency. Simulation is carried out using ADS simulator, and it was verified using a vector network analyzer. The proposed fractal antenna operates in the UHF digital TV range from 470 MHz to 683 MHz and in the 2.45 GHz to 2.4835 GHz range of broadband wireless local area network.


2019 ◽  
Vol 8 (4) ◽  
pp. 3257-3263

Antennas play a vital role in wireless communication; a thirst of excellence in this area is unending. Proposed work describes a concept of fractal multiband antenna designed in the hexagon shape. Basically fractal is the concept used in Microstrip antenna for giving better results than conventional Microstrip antenna. By using hexagonal fractal antenna we can possibly achieve the radiation pattern with high gain. The coaxial feeding is used and multiple hexagons are interconnected in array for maintaining conductivity and to preserve electrical self similarity. Hexagonal antenna is used for different wireless applications. The proposed antenna frequency band covers a large number of wireless communication applications including GPS (1.6GHz), Bluetooth (2.4 GHz) & WLAN (3.6GHz). Antenna design has been designed and simulated by using the software Ansoft’s HFSS and parameters like bandwidth return loss, directivity, VSWR are analyzed. Fabrication of the antenna is done by using wet-etching method, on FR-4 dielectric substrate material. Experimental results are taken on Vector Network Analyzer (VNA) and those obtained results were compared with simulated results. The hexagonal fractal antenna array is found to possess predictable multiband characteristics.


Sign in / Sign up

Export Citation Format

Share Document