Research on the evolution of industry-university-research cooperation innovation network based on improved traditional scale-free network

Author(s):  
Cao Xia ◽  
Zhang Lu-peng ◽  
Liu Guo-wei
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yingying Xu ◽  
Liangqun Qi ◽  
Xichen Lyu ◽  
Xinyu Zang

Collaborative innovation networks have the basic attributes of complex networks. The interaction of innovation network members has promoted the development of collaborative innovation networks. Using the game-based theory in the B-A scale-free network context, this paper builds an evolutionary game model of network members and explores the emergence mechanism from collaborative innovation behavior to the macroevolution of networks. The results show that revenue distribution, compensation of the betrayer, government subsidies, and supervision have positively contributed to the continued stability of collaborative innovation networks. However, the effect mechanisms are dissimilar for networks of different scales. In small networks, the rationality of the revenue distribution among members that have similar strengths should receive more attention, and the government should implement medium-intensity supervision measures. In large networks, however, compensation of the betrayer should be attached greater importance to, and financial support from the government can promote stable evolution more effectively.


2009 ◽  
Vol 29 (5) ◽  
pp. 1230-1232
Author(s):  
Hao RAO ◽  
Chun YANG ◽  
Shao-hua TAO

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2018 ◽  
Vol 35 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Lei Zhu ◽  
Lei Wang ◽  
Xiang Zheng ◽  
Yuzhang Xu

Sign in / Sign up

Export Citation Format

Share Document