Study on Sensitive Mechanism and Numerical Simulation of Thermal Expansion Fluidic Gyroscope in Three-Dimensional Model

Author(s):  
Anrun Ren ◽  
Linhua Piao ◽  
Yuxin Wang
2015 ◽  
Vol 9 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Kuiyang Wang ◽  
Jinhua Tang ◽  
Guoqing Li

In order to optimize the design method and improve the performance of hydraulic retarder, the numerical simulation of multi-field coupling of heat, fluid and solid is carried out to hydraulic retarder, based on the numerical computation and algorithm of heat-fluid coupling and fluid-solid coupling. The computation models of heat-fluid coupling and fluid-solid coupling of hydraulic retarder are created. The three dimensional model of hydraulic retarder is established based on CATIA software, and the whole flow passage model of hydraulic retarder is extracted on the basis of the three dimensional model established. Based on the CFD calculation and the finite element numerical simulation, the temperature field, stress field, deformation and stress state are analysised to hydraulic retarder in the state of whole filling when the rotate speed is 1600 r/min. In consideration of rotating centrifugal force, thermal stress and air exciting vibration force of blade surface, by using the sequential coupling method, the flow field characteristics of hydraulic retarder and dynamic characteristics of blade structure are analysised and researched based on multi-field coupling of heat, fluid and solid. These provide the theoretical foundation and references for parametric design of hydraulic retarder.


2019 ◽  
Author(s):  
Z. P. Li ◽  
L. Q. Sun ◽  
X. L. Yao ◽  
Y. Piao

Abstract In the process of bubbling from two submerged adjacent orifices, bubbles coalescence becomes inevitable. But the study of the evolution and interaction of bubbles from submerged orifices is little, especially numerical simulation. In this paper, combined with mesh smoothing technique, mesh subdivision technique and the technique of axisymmetric coalescence and 3D coalescence, a three-dimensional model of bubbles coalescence at two submerged adjacent orifices on the wall is established by the boundary element method. Then, numerical simulations were carried out for horizontal and vertical coalescence before detachment. Finally, by changing the ventilation rate and the Froude number, the effects of different ventilation rates and buoyancy on the process of bubbles coalescence at two adjacent orifices were investigated. The results show that for horizontal coalescence, the effect of ventilation rate is more pronounced than buoyancy. As the ventilation rate increases or the influence of buoyancy is decreased, the amplitude of internal pressure fluctuation of the bubble decreases and the coalescence time decreases. For vertical coalescence, the effect of buoyancy is more pronounced than ventilation rate. With the influence of buoyancy is decreased, the vertical coalescence time is increased, the internal pressure of the bubble is decreased. The influence of ventilation rate is similar to that of horizontal coalescence.


Author(s):  
Oscar Darío Monsalve Cifuentes ◽  
Jonathan Graciano Uribe ◽  
Diego Andrés Hincapié Zuluaga

In this work, a 76 mm diameter propeller-type turbine is numerically investigated using a parametric study and computational fluid dynamics. The three-dimensional model of the turbine is modeled using data available in the bibliography. A mesh independence study is carried out utilizing a tetrahedron-based mesh with inflation layers around the turbine blade and the pipe wall. The best efficiency point is determined by the maximum hydraulic efficiency of 64.46 %, at a flow rate of 9.72x10-3 m3/s , a head drop of 1.76 m, and a mechanical power of 107.83 W. Additionally, the dimensionless distance y+, pressure, and velocity contours are shown.


1995 ◽  
Vol 117 (4) ◽  
pp. 696-705 ◽  
Author(s):  
Robert R. Hwang ◽  
T. P. Chiang

In this study, an investigation using a three-dimensional numerical model, which treats conservation of mass, momentum, and salinity simultaneously, was carried out to study the character of a vertical forced plume in a uniform cross-stream of stably linear stratified environment. A k-ε turbulence model was used to simulate the turbulent phenomena and close the solving problem. The performance of the three-dimensional model is evaluated by comparison of the numerical results with some available experimental measurements. Results indicate that the numerical computation simulates satisfactorily the plume behavior in a stratified crossflow. The secondary vortex pairs in the cross section induced by the primary one change as the plume flows downstream. This denotes the transformation of entrainment mechanism in stratified crossflow.


1977 ◽  
Vol 28 (6) ◽  
pp. 775 ◽  
Author(s):  
AH Sharobeam ◽  
TG Sag

A three-dimensional model was developed using the primitive equation of motion and continuity equation and allowing for vertical surface displacements to occur. Actual depths were used and observed values for the temperature and salinity were used to calculate the density. Four vertical grid layers were used in the numerical simulation of the circulation. The wind speed and directions were based on a theoretical form for the wind stream function. This form was similar to that for observed storm patterns in the gulf area. The simulation was carried out over a period of about 60 h and displays of mass transports, horizontal velocities at each layer and surface elevations were produced at regular intervals throughout the simulation. In the wake of the storm there was a complete reversal of the directions of the flow after the first 6 h followed by a return to the original directions after the next 6 h and then a return to the initial steady state during the next 12 h. The elevations were found to increase rapidly with the increase in the wind velocity in the shallow parts of the gulf and the lines of constant elevations settled to a direction perpendicular to the wind direction.


Sign in / Sign up

Export Citation Format

Share Document