Microarray Image Segmentation Using Region Growing Algorithm and Mathematical Morphology

Author(s):  
Ping Ye ◽  
Guirong Weng
2017 ◽  
Vol 9 (1) ◽  
pp. 56
Author(s):  
Wanvy Arifha Saputra ◽  
Agus Zainal Arifin

The image of the tuna before entering process classification, it must have a good segmentation results. The result of good segmentation is object and background separate clearly. The image of tuna which has a distribution of light that is uneven and has a complex texture will produce an error segmentation. One method of image segmentation was seeded region growing and parameters that used only two, namely seed and threshold. This research proposed method seeded region growing in the HSI color space for image segmentation of tuna. The Color space of RGB (red green blue) on image of tuna transformed into a color space HSI (hue saturation intensity) then only the hue color space used as segmentation by using seeded region growing. Determination of seed and threshold parameters can do manually and the result of the segmentation do refinement with mathematical morphology. The experiment using 30 image of tuna to segmentation and evaluation methods using RAE (relative foreground area error), MAE (missclassification error) and the MHD (modified Hausdroff distance). The image of the tuna successfully performed segmentation evidenced by a value RAE, ME and MHD respectively are 5,40%, 1,53% dan 0,41%.


Author(s):  
Aleš Tippner

Image segmentation is fundamental prerequisite for new satellite images interpretation methods. GIS GRASS provides segmentation tools enabling global image segmentation only. We designed procedure enabling local segmentation using existing GRASS tools and segmentation algorithm based on region growing that we developed with C++. This algorithm applies mathematical morphology operators to output segments, too. Principial aim of the project is creation of useful input for differentiation of base land cover classes in panchromatic high-resolution satellite image (or historical aerial photographs for example).


Author(s):  
P. N. Happ ◽  
R. S. Ferreira ◽  
G. A. O. P. Costa ◽  
R. Q. Feitosa ◽  
C. Bentes ◽  
...  

2019 ◽  
Vol 65 (No. 8) ◽  
pp. 321-329
Author(s):  
Haitao Wang ◽  
Yanli Chen

Because the image fire smoke segmentation algorithm can not extract white, gray and black smoke at the same time, a smoke image segmentation algorithm is proposed by combining rough set and region growth method. The R component of the image is extracted in the RGB colour space, the roughness histogram is constructed according to the statistical histogram of the R component, and the appropriate valley value in the roughness histogram is selected as the segmentation threshold, the image is roughly segmented. Relative to the background image, the smoke belongs to the motion information, and the motion region is extracted by the interframe difference method to eliminate static interference. Smoke has a unique colour feature, a smoke colour model is created in the RGB colour space, the motion disturbances of similar colour are removed and the suspected smoke areas are obtained. The seed point is selected in the region, and the region is grown on the result of rough segmentation, the smoke region is extracted. The experimental results show that the algorithm can segment white, gray and black smoke at the same time, and the irregular information of smoke edges is relatively complete. Compared with the existing algorithms, the average segmentation accuracy, recall rate and F-value are increased by 19%, 21.5% and 20%, respectively.<br /><br />


2005 ◽  
Vol 152 (6) ◽  
pp. 579 ◽  
Author(s):  
T. Morimoto ◽  
Y. Harada ◽  
T. Koide ◽  
H.J. Mattausch

Sign in / Sign up

Export Citation Format

Share Document