Feature extraction of underwater acoustic signal using mode decomposition and measuring complexity

Author(s):  
Yaan Li ◽  
Yuxing Li
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Yang ◽  
Lipeng Gao ◽  
Guohui Li

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals. To solve the problem of K value selection in variational mode decomposition, a new K value selection method MVMD is proposed from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf optimization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD, an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA, EMD-OKELM, and other prediction models. The experimental results show that the proposed MVMD-OKELM prediction model has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Guohui Li ◽  
Wanni Chang ◽  
Hong Yang

The prediction of underwater acoustic signal is the basis of underwater acoustic signal processing, which can be applied to underwater target signal noise reduction, detection, and feature extraction. Therefore, it is of great significance to improve the prediction accuracy of underwater acoustic signal. Aiming at the difficulty in underwater acoustic signal sequence prediction, a new hybrid prediction model for underwater acoustic signal is proposed in this paper, which combines the advantages of variational mode decomposition (VMD), artificial intelligence method, and optimization algorithm. In order to reduce the complexity of underwater acoustic signal sequence and improve operation efficiency, the original signal is decomposed by VMD into intrinsic mode components (IMFs) according to the characteristics of the signal, and dispersion entropy (DE) is used to analyze the complexity of IMF. The subsequences (VMD-DE) are obtained by adding the IMF with similar complexity. Then, extreme learning machine (ELM) is used to predict the low-frequency subsequence obtained by VMD-DE. Support vector regression (SVR) is used to predict the high-frequency subsequence. In addition, an artificial bee colony (ABC) algorithm is used to optimize model performance by adjusting the parameters of SVR. The experimental results show that the proposed new hybrid model can provide enhanced accuracy with the reduction of prediction error compared with other existing prediction methods.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 61 ◽  
Author(s):  
Yuxing Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Xiaohui Yang

In order to effectively extract the frequency characteristics of an underwater acoustic signal under sensor measurement, a fusion frequency feature extraction method for an underwater acoustic signal is presented based on variational mode decomposition (VMD), duffing chaotic oscillator (DCO) and a kind of permutation entropy (PE). Firstly, VMD decomposes the complex multi-component underwater acoustic signal into a set of intrinsic mode functions (IMFs), so as to extract the estimated center frequency of each IMF. Secondly, the frequency of the line spectrum can be obtained by using DCO and a kind of PE (KPE). DCO is used to detect the actual frequency of the line spectrum for each IMF and KPE can determine the accurate frequency when the phase space track is in the great periodic state. Finally, the frequency characteristic parameters acted as the input of the support vector machine (SVM) to distinguish different types of underwater acoustic signals. By comparing with the other three traditional methods for simulation signal and different kinds of underwater acoustic signals, the results show that the proposed method can accurately extract the frequency characteristics and effectively realize the classification and recognition for the underwater acoustic signal.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 563 ◽  
Author(s):  
Yuxing Li ◽  
Yaan Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Hong Yang ◽  
...  

Owing to the complexity of the ocean background noise, underwater acoustic signal denoising is one of the hotspot problems in the field of underwater acoustic signal processing. In this paper, we propose a new technique for underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), mutual information (MI), permutation entropy (PE), and wavelet threshold denoising. CEEMDAN is an improved algorithm of empirical mode decomposition (EMD) and ensemble EMD (EEMD). First, CEEMDAN is employed to decompose noisy signals into many intrinsic mode functions (IMFs). IMFs can be divided into three parts: noise IMFs, noise-dominant IMFs, and real IMFs. Then, the noise IMFs can be identified on the basis of MIs of adjacent IMFs; the other two parts of IMFs can be distinguished based on the values of PE. Finally, noise IMFs were removed, and wavelet threshold denoising is applied to noise-dominant IMFs; we can obtain the final denoised signal by combining real IMFs and denoised noise-dominant IMFs. Simulation experiments were conducted by using simulated data, chaotic signals, and real underwater acoustic signals; the proposed denoising technique performs better than other existing denoising techniques, which is beneficial to the feature extraction of underwater acoustic signal.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Gang Hu ◽  
Kejun Wang ◽  
Yuan Peng ◽  
Mengran Qiu ◽  
Jianfei Shi ◽  
...  

The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.


Sign in / Sign up

Export Citation Format

Share Document