scholarly journals A Fusion Frequency Feature Extraction Method for Underwater Acoustic Signal Based on Variational Mode Decomposition, Duffing Chaotic Oscillator and a Kind of Permutation Entropy

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 61 ◽  
Author(s):  
Yuxing Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Xiaohui Yang

In order to effectively extract the frequency characteristics of an underwater acoustic signal under sensor measurement, a fusion frequency feature extraction method for an underwater acoustic signal is presented based on variational mode decomposition (VMD), duffing chaotic oscillator (DCO) and a kind of permutation entropy (PE). Firstly, VMD decomposes the complex multi-component underwater acoustic signal into a set of intrinsic mode functions (IMFs), so as to extract the estimated center frequency of each IMF. Secondly, the frequency of the line spectrum can be obtained by using DCO and a kind of PE (KPE). DCO is used to detect the actual frequency of the line spectrum for each IMF and KPE can determine the accurate frequency when the phase space track is in the great periodic state. Finally, the frequency characteristic parameters acted as the input of the support vector machine (SVM) to distinguish different types of underwater acoustic signals. By comparing with the other three traditional methods for simulation signal and different kinds of underwater acoustic signals, the results show that the proposed method can accurately extract the frequency characteristics and effectively realize the classification and recognition for the underwater acoustic signal.

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 563 ◽  
Author(s):  
Yuxing Li ◽  
Yaan Li ◽  
Xiao Chen ◽  
Jing Yu ◽  
Hong Yang ◽  
...  

Owing to the complexity of the ocean background noise, underwater acoustic signal denoising is one of the hotspot problems in the field of underwater acoustic signal processing. In this paper, we propose a new technique for underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), mutual information (MI), permutation entropy (PE), and wavelet threshold denoising. CEEMDAN is an improved algorithm of empirical mode decomposition (EMD) and ensemble EMD (EEMD). First, CEEMDAN is employed to decompose noisy signals into many intrinsic mode functions (IMFs). IMFs can be divided into three parts: noise IMFs, noise-dominant IMFs, and real IMFs. Then, the noise IMFs can be identified on the basis of MIs of adjacent IMFs; the other two parts of IMFs can be distinguished based on the values of PE. Finally, noise IMFs were removed, and wavelet threshold denoising is applied to noise-dominant IMFs; we can obtain the final denoised signal by combining real IMFs and denoised noise-dominant IMFs. Simulation experiments were conducted by using simulated data, chaotic signals, and real underwater acoustic signals; the proposed denoising technique performs better than other existing denoising techniques, which is beneficial to the feature extraction of underwater acoustic signal.


2020 ◽  
Vol 15 (5) ◽  
pp. 729-737
Author(s):  
Gong Chen ◽  
Lei Cai ◽  
Lv Zong ◽  
Yan Wang ◽  
Xin Yuan

Passive acoustic technology (PAT) is an important tool to acquire the passive acoustic signals from marine organisms. In this paper, PAT fish detection is introduced at great length, including the relevant instruments, signal processing methods, and workflow. Focusing on the key tasks of PAT fish detection, the authors proposed a sparse decomposition algorithm that extracts coherent ratio of passive fish acoustic signal, and designed a feature extraction method for that signal based on speech imitation technology. Experimental results demonstrate that the proposed sparse decomposition algorithm can detect fish acoustic signal accurately at low signal-to-noise ratios (SNRs), and the proposed feature extraction method can effectively extract fish acoustic signals from the marine background. The research results shed important new light on the protection and management of fishery resources in the seas and oceans.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hong Yang ◽  
Lipeng Gao ◽  
Guohui Li

Aiming at the chaotic characteristics of underwater acoustic signal, a prediction model of grey wolf-optimized kernel extreme learning machine (OKELM) based on MVMD is proposed in this paper for short-term prediction of underwater acoustic signals. To solve the problem of K value selection in variational mode decomposition, a new K value selection method MVMD is proposed from the perspective of mutual information, which avoids the blindness of variational mode decomposition (VMD) in the preset modal number. Based on the prediction model of kernel extreme learning machine (KELM), this paper uses grey wolf optimization (GWO) algorithm to optimize and select its regularization parameters and kernel parameters and proposes an optimized kernel extreme learning machine OKELM. To further improve the prediction performance of the model, combined with MVMD, an underwater acoustic signal prediction model based on MVMD-OKELM is established. MVMD-OKELM prediction model is applied to Mackey–Glass chaotic time series prediction and underwater acoustic signal prediction and is compared with ARIMA, EMD-OKELM, and other prediction models. The experimental results show that the proposed MVMD-OKELM prediction model has a higher prediction accuracy and can be effectively applied to the prediction of underwater acoustic signal series.


2015 ◽  
Vol 719-720 ◽  
pp. 1019-1022
Author(s):  
Lei Lei Deng

In order to extract useful information of underwater acoustic signals from noise, preprocessing steps are unavoidable. In view of trend and transient pulse interference exited in the original data inevitability, morphological filter method is applied and analyzed in this paper. Data processing results show that the morphological filter method is superior to the traditional filter method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Guohui Li ◽  
Wanni Chang ◽  
Hong Yang

The prediction of underwater acoustic signal is the basis of underwater acoustic signal processing, which can be applied to underwater target signal noise reduction, detection, and feature extraction. Therefore, it is of great significance to improve the prediction accuracy of underwater acoustic signal. Aiming at the difficulty in underwater acoustic signal sequence prediction, a new hybrid prediction model for underwater acoustic signal is proposed in this paper, which combines the advantages of variational mode decomposition (VMD), artificial intelligence method, and optimization algorithm. In order to reduce the complexity of underwater acoustic signal sequence and improve operation efficiency, the original signal is decomposed by VMD into intrinsic mode components (IMFs) according to the characteristics of the signal, and dispersion entropy (DE) is used to analyze the complexity of IMF. The subsequences (VMD-DE) are obtained by adding the IMF with similar complexity. Then, extreme learning machine (ELM) is used to predict the low-frequency subsequence obtained by VMD-DE. Support vector regression (SVR) is used to predict the high-frequency subsequence. In addition, an artificial bee colony (ABC) algorithm is used to optimize model performance by adjusting the parameters of SVR. The experimental results show that the proposed new hybrid model can provide enhanced accuracy with the reduction of prediction error compared with other existing prediction methods.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 468 ◽  
Author(s):  
Dongri Xie ◽  
Hamada Esmaiel ◽  
Haixin Sun ◽  
Jie Qi ◽  
Zeyad A. H. Qasem

Due to the complexity and variability of underwater acoustic channels, ship-radiated noise (SRN) detected using the passive sonar is prone to be distorted. The entropy-based feature extraction method can improve this situation, to some extent. However, it is impractical to directly extract the entropy feature for the detected SRN signals. In addition, the existing conventional methods have a lack of suitable de-noising processing under the presence of marine environmental noise. To this end, this paper proposes a novel feature extraction method based on enhanced variational mode decomposition (EVMD), normalized correlation coefficient (norCC), permutation entropy (PE), and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, EVMD is utilized to obtain a group of intrinsic mode functions (IMFs) from the SRN signals. The noise-dominant IMFs are then eliminated by a de-noising processing prior to PE calculation. Next, the correlation coefficient between each signal-dominant IMF and the raw signal and PE of each signal-dominant IMF are calculated, respectively. After this, the norCC is used to weigh the corresponding PE and the sum of these weighted PE is considered as the final feature parameter. Finally, the feature vectors are fed into the PSO-SVM multi-class classifier to classify the SRN samples. The experimental results demonstrate that the recognition rate of the proposed methodology is up to 100%, which is much higher than the currently existing methods. Hence, the method proposed in this paper is more suitable for the feature extraction of SRN signals.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 918 ◽  
Author(s):  
Guohui Li ◽  
Zhichao Yang ◽  
Hong Yang

Noise reduction of underwater acoustic signals is of great significance in the fields of military and ocean exploration. Based on the adaptive decomposition characteristic of uniform phase empirical mode decomposition (UPEMD), a noise reduction method for underwater acoustic signals is proposed, which combines amplitude-aware permutation entropy (AAPE) and Pearson correlation coefficient (PCC). UPEMD is a recently proposed improved empirical mode decomposition (EMD) algorithm that alleviates the mode splitting and residual noise effects of EMD. AAPE is a tool to quantify the information content of nonlinear time series. Unlike permutation entropy (PE), AAPE can reflect the amplitude information on time series. Firstly, the original signal is decomposed into a series of intrinsic mode functions (IMFs) by UPEMD. The AAPE of each IMF is calculated. The modes are separated into high-frequency IMFs and low-frequency IMFs, and all low-frequency IMFs are determined as useful IMFs (UIMFs). Then, the PCC between the high-frequency IMF with the smallest AAPE and the original signal is calculated. If PCC is greater than the threshold, the IMF is also determined as a UIMF. Finally, all UIMFs are reconstructed and the denoised signal is obtained. Chaotic signals with different signal-to-noise ratios (SNRs) are used for denoising experiments. Compared with EMD and extreme-point symmetric mode decomposition (ESMD), the proposed method has higher SNR and smaller root mean square error (RMSE). The proposed method is applied to noise reduction of real underwater acoustic signals. The results show that the method can further eliminate noise and the chaotic attractors are smoother and clearer.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sunan Zhang ◽  
Jianyan Tian ◽  
Amit Banerjee ◽  
Jiangli Li

Automatic monitoring of group-housed pigs in real time through porcine acoustic signals has played a crucial role in automated farming. In the process of data collection and transmission, acoustic signals are generally interfered with noise. In this paper, an effective porcine acoustic signal denoising technique based on ensemble empirical mode decomposition (EEMD), independent component analysis (ICA), and wavelet threshold denoising (WTD) is proposed. Firstly, the porcine acoustic signal is decomposed into intrinsic mode functions (IMFs) by EEMD. In addition, permutation entropy (PE) is adopted to distinguish noise-dominant IMFs from the IMFs. Secondly, ICA is employed to extract the independent components (ICs) of the noise-dominant IMFs. The correlation coefficients of ICs and the first IMF are calculated to recognize noise ICs. The noise ICs will be removed. Then, WTD is applied to the other ICs. Finally, the porcine acoustic signal is reconstructed by the processed components. Experimental results show that the proposed method can effectively improve the denoising performance of porcine acoustic signal.


Sign in / Sign up

Export Citation Format

Share Document