A Novel approach of Segmentation of Cytomegalovirus Image using K-Means Clustering and Discrete Wavelet Transform

Author(s):  
K. Deepa ◽  
S. Suganya

This paper presents a novel approach on motor current signature analysis (MCSA) forbroken Rotor Bar fault and High Contact Resistance fault using stator current signals as an input from the three phases of Induction motors. Discrete Wavelet Transform is preferred over the Fast Fourier Transform (FFT). Fast Fourier Transform (FFT) converts signals from time domain to frequency domain on the other hand Discrete Wavelet Transform (DWT) gives complete three-dimensional information of the signal, frequency, amplitude, and the time where the frequency components exist. In wavelet analysis, thesignal is converted into scaled and translated version of mother wavelet, which is very irregular so cannot be predicted. Hence, mother wavelets are more appropriate for predicting the local behavior of the signal including irregularities and spikes. In this research features are extracted using DWT and then features are trained in Deep NN sequential model for the purpose of classification of the faults. In this research, MATLAB software has been used for building the motor model in Simulink environment and PyCharm software is used to implement Deep NN for getting accuracy and classification results. This research helps in early detection of the faults that assists in prevention from unscheduled downtimes in industry, economy loss and production loss as well.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
Lina Yang ◽  
Yuan Yan Tang ◽  
Qi Sun

To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1) fast number theoretic transform(FNTT) In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2) In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.


Author(s):  
SAWA MATSUYAMA ◽  
SHIHO MATSUYAMA ◽  
YOSHIFURU SAITO

A discrete wavelet transform is one of the effective methodologies for compressing the image data and extracting the major characteristics from various data, but it always requires a number of target data composed of a power of 2. To overcome this difficulty without losing any original data information, we propose here a novel approach based on the Fourier transform. The key idea is simple but effective because it keeps all of the frequency components comprising the target data exactly. The raw data is firstly transformed to the Fourier coefficients by Fourier transform. Then, the inverse Fourier transform makes it possible to the number of data comprising a power of 2. We have applied this interpolation for the wind vector image data, and we have tried to compress the data by the multiresolution analysis by using the three-dimensional discrete wavelet transform. Several examples demonstrate the usefulness of our new method to work out the graphical communication tools.


Informatica ◽  
2013 ◽  
Vol 24 (4) ◽  
pp. 657-675
Author(s):  
Jonas Valantinas ◽  
Deividas Kančelkis ◽  
Rokas Valantinas ◽  
Gintarė Viščiūtė

Sign in / Sign up

Export Citation Format

Share Document