A Standard Approach to Enabling the Semantic Interoperability of Disease Surveillance Data in Health Information Systems: A Case of Namibia

Author(s):  
Nikodemus Angula ◽  
Nomusa Dlodlo
1998 ◽  
Vol 37 (04/05) ◽  
pp. 518-526 ◽  
Author(s):  
D. Sauquet ◽  
M.-C. Jaulent ◽  
E. Zapletal ◽  
M. Lavril ◽  
P. Degoulet

AbstractRapid development of community health information networks raises the issue of semantic interoperability between distributed and heterogeneous systems. Indeed, operational health information systems originate from heterogeneous teams of independent developers and have to cooperate in order to exchange data and services. A good cooperation is based on a good understanding of the messages exchanged between the systems. The main issue of semantic interoperability is to ensure that the exchange is not only possible but also meaningful. The main objective of this paper is to analyze semantic interoperability from a software engineering point of view. It describes the principles for the design of a semantic mediator (SM) in the framework of a distributed object manager (DOM). The mediator is itself a component that should allow the exchange of messages independently of languages and platforms. The functional architecture of such a SM is detailed. These principles have been partly applied in the context of the HEllOS object-oriented software engineering environment. The resulting service components are presented with their current state of achievement.


2016 ◽  
Vol 22 (4) ◽  
pp. 962-974 ◽  
Author(s):  
Konstantinos Chorianopoulos ◽  
Karolos Talvis

Epidemiology has made advances, thanks to the availability of real-time surveillance data and by leveraging the geographic analysis of incidents. There are many health information systems that visualize the symptoms of influenza-like illness on a digital map, which is suitable for end-users, but it does not afford further processing and analysis. Existing systems have emphasized the collection, analysis, and visualization of surveillance data, but they have neglected a modular and interoperable design that integrates high-resolution geo-location with real-time data. As a remedy, we have built an open-source project and we have been operating an open service that detects flu-related symptoms and shares the data in real-time with anyone who wants to built upon this system. An analysis of a small number of precisely geo-located status updates (e.g. Twitter) correlates closely with the Google Flu Trends and the Centers for Disease Control and Prevention flu-positive reports. We suggest that public health information systems should embrace an open-source approach and offer linked data, in order to facilitate the development of an ecosystem of applications and services, and in order to be transparent to the general public interest.


1979 ◽  
Vol 18 (04) ◽  
pp. 214-222
Author(s):  
K. Sauter

The problems encountered in achieving data security within computer-supported information systems increased with the development of modern computer systems. The threats are manifold and have to be met by an appropriate set of hardware precautions, organizational procedures and software measures which are the topic of this paper. Design principles and software construction rules are treated first, since the security power of a system is considerably determined by its proper design. A number of software techniques presented may support security mechanisms ranging from user identification and authentication to access control, auditing and threat monitoring. Encryption is a powerful tool for protecting data during physical storage and transmission as well.Since an increasing number of health information systems with information-integrating functions are database-supported, the main issues and terms of database systems and their specific security aspects are summarized in the appendix.


Sign in / Sign up

Export Citation Format

Share Document