Stock Market Prediction Using Machine Learning Techniques

Author(s):  
Naadun Sirimevan ◽  
I.G. U. H. Mamalgaha ◽  
Chandira Jayasekara ◽  
Y. S. Mayuran ◽  
Chandimal Jayawardena
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2717
Author(s):  
Nusrat Rouf ◽  
Majid Bashir Malik ◽  
Tasleem Arif ◽  
Sparsh Sharma ◽  
Saurabh Singh ◽  
...  

With the advent of technological marvels like global digitization, the prediction of the stock market has entered a technologically advanced era, revamping the old model of trading. With the ceaseless increase in market capitalization, stock trading has become a center of investment for many financial investors. Many analysts and researchers have developed tools and techniques that predict stock price movements and help investors in proper decision-making. Advanced trading models enable researchers to predict the market using non-traditional textual data from social platforms. The application of advanced machine learning approaches such as text data analytics and ensemble methods have greatly increased the prediction accuracies. Meanwhile, the analysis and prediction of stock markets continue to be one of the most challenging research areas due to dynamic, erratic, and chaotic data. This study explains the systematics of machine learning-based approaches for stock market prediction based on the deployment of a generic framework. Findings from the last decade (2011–2021) were critically analyzed, having been retrieved from online digital libraries and databases like ACM digital library and Scopus. Furthermore, an extensive comparative analysis was carried out to identify the direction of significance. The study would be helpful for emerging researchers to understand the basics and advancements of this emerging area, and thus carry-on further research in promising directions.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 170 ◽  
Author(s):  
Zhixi Li ◽  
Vincent Tam

Momentum and reversal effects are important phenomena in stock markets. In academia, relevant studies have been conducted for years. Researchers have attempted to analyze these phenomena using statistical methods and to give some plausible explanations. However, those explanations are sometimes unconvincing. Furthermore, it is very difficult to transfer the findings of these studies to real-world investment trading strategies due to the lack of predictive ability. This paper represents the first attempt to adopt machine learning techniques for investigating the momentum and reversal effects occurring in any stock market. In the study, various machine learning techniques, including the Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLP), and Long Short-Term Memory Neural Network (LSTM) were explored and compared carefully. Several models built on these machine learning approaches were used to predict the momentum or reversal effect on the stock market of mainland China, thus allowing investors to build corresponding trading strategies. The experimental results demonstrated that these machine learning approaches, especially the SVM, are beneficial for capturing the relevant momentum and reversal effects, and possibly building profitable trading strategies. Moreover, we propose the corresponding trading strategies in terms of market states to acquire the best investment returns.


2020 ◽  
Vol 13 (1) ◽  
pp. 130-149
Author(s):  
Puneet Misra ◽  
Siddharth Chaurasia

Stock market movements are affected by numerous factors making it one of the most challenging problems for forecasting. This article attempts to predict the direction of movement of stock and stock indices. The study uses three classifiers - Artificial Neural Network, Random Forest and Support Vector Machine with four different representation of inputs. First representation uses raw data (open, high, low, close and volume), The second uses ten features in the form of technical indicators generated by use of technical analysis. The third and fourth portrayal presents two different ways of converting the indicator data into discrete trend data. Experimental results suggest that for raw data support vector machine provides the best results. For other representations, there is no clear winner regarding models applied, but portrayal of data by the proposed approach gave best overall results for all the models and financial series. Consistency of the results highlight the importance of feature generation and right representation of dataset to machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document