Groundwater potential mapping using machine learning models for Northeastern Karbi Anglong district, Assam, India

Author(s):  
Shruti Sachdeva ◽  
Bijendra Kumar
CATENA ◽  
2020 ◽  
Vol 187 ◽  
pp. 104421 ◽  
Author(s):  
Davoud Davoudi Moghaddam ◽  
Omid Rahmati ◽  
Mahdi Panahi ◽  
John Tiefenbacher ◽  
Hamid Darabi ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2300
Author(s):  
Samy Elmahdy ◽  
Tarig Ali ◽  
Mohamed Mohamed

Mapping of groundwater potential in remote arid and semi-arid regions underneath sand sheets over a very regional scale is a challenge and requires an accurate classifier. The Classification and Regression Trees (CART) model is a robust machine learning classifier used in groundwater potential mapping over a very regional scale. Ten essential groundwater conditioning factors (GWCFs) were constructed using remote sensing data. The spatial relationship between these conditioning factors and the observed groundwater wells locations was optimized and identified by using the chi-square method. A total of 185 groundwater well locations were randomly divided into 129 (70%) for training the model and 56 (30%) for validation. The model was applied for groundwater potential mapping by using optimal parameters values for additive trees were 186, the value for the learning rate was 0.1, and the maximum size of the tree was five. The validation result demonstrated that the area under the curve (AUC) of the CART was 0.920, which represents a predictive accuracy of 92%. The resulting map demonstrated that the depressions of Mondafan, Khujaymah and Wajid Mutaridah depression and the southern gulf salt basin (SGSB) near Saudi Arabia, Oman and the United Arab Emirates (UAE) borders reserve fresh fossil groundwater as indicated from the observed lakes and recovered paleolakes. The proposed model and the new maps are effective at enhancing the mapping of groundwater potential over a very regional scale obtained using machine learning algorithms, which are used rarely in the literature and can be applied to the Sahara and the Kalahari Desert.


2021 ◽  
Author(s):  
Dejian Wang ◽  
Jiazhong Qian ◽  
Lei Ma ◽  
Weidong Zhao ◽  
Di Gao ◽  
...  

Abstract Mapping of groundwater potential over space, built by synergizing environmental variables and machine learning models, was of great significance for regional water resources management. Taking the Chihe River basin in Anhui province as an example, thirteen influence factors were used to predict the spatial distribution of groundwater, including elevation, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), drainage density, distance to rivers, distance to faults, lithology, soil type, land use, and normalized difference vegetation index (NDVI). The potential of groundwater resource in this region was predicted using GIS-based machine learning models, including logistic regression (LR), deep neural networks (DNN), and random forest (RF) model. Then, the accuracy of prediction results was evaluated by calculating the RMSE, MAE and R evaluation index. The results show that there is no collinearity among the 13 environmental impact factors, which can provide corresponding environmental variables for the evaluation of regional groundwater potential. Machine learning models show that groundwater potential is concentrated in moderate to high potential areas. Among them, the moderate to the high potential of this area accounted for 81.14% in the LR model, 90.36% and 87.55% in the DNN model and the RF model, respectively. According to the result of these evaluation indexes, the three models all have high prediction accuracy, among which the LR model performs more prominently. The good prediction capabilities of these machine learning technologies can provide a reliable scientific basis for spatial prediction of groundwater potential and management of water resources.


Author(s):  
Amirhosein Mosavi ◽  
Farzaneh Sajedi Hosseini ◽  
Bahram Choubin ◽  
Massoud Goodarzi ◽  
Adrienn A. Dineva ◽  
...  

2021 ◽  
Author(s):  
Víctor Gómez-Escalonilla ◽  
Pedro Martínez-Santos ◽  
Miguel Martín-Loeches

Abstract. Groundwater is crucial for domestic supplies in the Sahel, where the strategic importance of aquifers can only be expected to increase in the coming years due to climate change. Groundwater potential mapping is gaining recognition as a valuable tool to underpin water management practices in the region, and hence, to improve water access. This paper presents a machine learning method to map groundwater potential and illustrates it through an application to two regions of Mali. A set of explanatory variables for the presence of groundwater is developed first. Several scaling methods (standardization, normalization, maximum absolute value and min-max scaling) are used to avoid the pitfalls associated with the reclassification of explanatory variables. A number of supervised learning classifiers is then trained and tested on a large borehole database (n = 3,345) in order to find meaningful correlations between the presence or absence of groundwater and the explanatory variables. This process identifies noisy, collinear and counterproductive variables and excludes them from the input dataset. Tree-based algorithms, including the AdaBoost, Gradient Boosting, Random Forest, Decision Tree and Extra Trees classifiers were found to outperform other algorithms on a consistent basis (accuracy > 0.85), whereas maximum absolute value and standardization proved the most efficient methods to scale explanatory variables. Borehole flow rate data is used to calibrate the results beyond standard machine learning metrics, thus adding robustness to the predictions. The southern part of the study area was identified as the better groundwater prospect, which is consistent with the geological and climatic setting. From a methodological standpoint, the outcomes lead to three major conclusions: (1) because there is no aprioristic way to know which algorithm will work better on a given dataset, we advocate the use of a large number of machine learning classifiers, out of which the best are subsequently picked for ensembling; (2) standard machine learning metrics may be of limited value when appraising map outcomes, and should be complemented with hydrogeological indicators whenever possible; and (3) the scaling of the variables helps to minimize bias arising from expert judgement and maintains robust predictive capabilities.


Sign in / Sign up

Export Citation Format

Share Document