Applying deep learning approaches for network traffic prediction

Author(s):  
R Vinayakumar ◽  
K. P. Soman ◽  
Prabaharan Poornachandran
Author(s):  
Rongzhou Huang ◽  
Chuyin Huang ◽  
Yubao Liu ◽  
Genan Dai ◽  
Weiyang Kong

Traffic prediction is a classical spatial-temporal prediction problem with many real-world applications such as intelligent route planning, dynamic traffic management, and smart location-based applications. Due to the high nonlinearity and complexity of traffic data, deep learning approaches have attracted much interest in recent years. However, few methods are satisfied with both long and short-term prediction tasks. Target at the shortcomings of existing studies, in this paper, we propose a novel deep learning framework called Long Short-term Graph Convolutional Networks (LSGCN) to tackle both traffic prediction tasks. In our framework, we propose a new graph attention network called cosAtt, and integrate both cosAtt and graph convolution networks (GCN) into a spatial gated block. By the spatial gated block and gated linear units convolution (GLU), LSGCN can efficiently capture complex spatial-temporal features and obtain stable prediction results. Experiments with three real-world traffic datasets verify the effectiveness of LSGCN.


2020 ◽  
Vol 6 ◽  
pp. e327
Author(s):  
Thavavel Vaiyapuri ◽  
Adel Binbusayyis

The ever-increasing use of internet has opened a new avenue for cybercriminals, alarming the online businesses and organization to stay ahead of evolving thread landscape. To this end, intrusion detection system (IDS) is deemed as a promising defensive mechanism to ensure network security. Recently, deep learning has gained ground in the field of intrusion detection but majority of progress has been witnessed on supervised learning which requires adequate labeled data for training. In real practice, labeling the high volume of network traffic is laborious and error prone. Intuitively, unsupervised deep learning approaches has received gaining momentum. Specifically, the advances in deep learning has endowed autoencoder (AE) with greater ability for data reconstruction to learn the robust feature representation from massive amount of data. Notwithstanding, there is no study that evaluates the potential of different AE variants as one-class classifier for intrusion detection. This study fills this gap of knowledge presenting a comparative evaluation of different AE variants for one-class unsupervised intrusion detection. For this research, the evaluation includes five different variants of AE such as Stacked AE, Sparse AE, Denoising AE, Contractive AE and Convolutional AE. Further, the study intents to conduct a fair comparison establishing a unified network configuration and training scheme for all variants over the common benchmark datasets, NSL-KDD and UNSW-NB15. The comparative evaluation study provides a valuable insight on how different AE variants can be used as one-class classifier to build an effective unsupervised IDS. The outcome of this study will be of great interest to the network security community as it provides a promising path for building effective IDS based on deep learning approaches alleviating the need for adequate and diverse intrusion network traffic behavior.


Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 20 ◽  
Author(s):  
Dehai Zhang ◽  
Linan Liu ◽  
Cheng Xie ◽  
Bing Yang ◽  
Qing Liu

With the arrival of 5G networks, cellular networks are moving in the direction of diversified, broadband, integrated, and intelligent networks. At the same time, the popularity of various smart terminals has led to an explosive growth in cellular traffic. Accurate network traffic prediction has become an important part of cellular network intelligence. In this context, this paper proposes a deep learning method for space-time modeling and prediction of cellular network communication traffic. First, we analyze the temporal and spatial characteristics of cellular network traffic from Telecom Italia. On this basis, we propose a hybrid spatiotemporal network (HSTNet), which is a deep learning method that uses convolutional neural networks to capture the spatiotemporal characteristics of communication traffic. This work adds deformable convolution to the convolution model to improve predictive performance. The time attribute is introduced as auxiliary information. An attention mechanism based on historical data for weight adjustment is proposed to improve the robustness of the module. We use the dataset of Telecom Italia to evaluate the performance of the proposed model. Experimental results show that compared with the existing statistics methods and machine learning algorithms, HSTNet significantly improved the prediction accuracy based on MAE and RMSE.


Sign in / Sign up

Export Citation Format

Share Document