The research and implementation of line anti-aliasing algorithm based on coordinate system rotation

Author(s):  
Jiao Yong ◽  
Wang Lu-ya ◽  
Chen Yue-yue
CrystEngComm ◽  
2019 ◽  
Vol 21 (45) ◽  
pp. 7011-7016
Author(s):  
Jiao Li ◽  
Guo-xiang Zhou ◽  
Jia Li

The distributions of d24 and k24 in the 3D space of a [001] poled (K, Na, Li)(Na, Ta)O3:Mn (KNNTL-Mn) single crystal were investigated by the coordinate system rotation method.


2016 ◽  
Vol 33 (4) ◽  
pp. 769-788 ◽  
Author(s):  
Andreas Brand ◽  
Christian Noss ◽  
Christian Dinkel ◽  
Markus Holzner

AbstractVelocity profile measurements at high spatial and temporal resolution are required for the detailed study of solute and momentum transfer close to the sediment–water interface. Still, not many devices allow such measurements in natural systems. Recently, a bistatic acoustic current profiler has become commercially available that allows the recording of profiles at down to 1-mm resolution with a maximum frequency of 100 Hz and a profile length of 3.5 cm. This study tested the ability to characterize the turbulent flow of this profiler in a laboratory flume and in a run of the river reservoir. The tests showed that average velocities were reliably measured in the upper 2.5 cm, while the flow statistics were affected by Doppler noise and signal decorrelation. The latter is caused by the decreasing overlap between the individual beam signals. Doppler noise can be estimated and accounted for by established correction procedures, but currently there is no method to quantify the influence of signal decorrelation. Both error sources mainly affect the measured variances of the velocities, while the Reynolds stresses are reliable as long as there is no interference with the solid bottom. In the field application, most problems arise because of the necessity of coordinate system rotation, since a perfect alignment of the profiler with the current is not possible. Also, because of the coordinate system rotation, the Reynolds stresses become contaminated by noise, which can be removed by low-pass filtering. Still, this filtering results in loss of the turbulent signal, which was estimated in this study to be between 2% and 10%.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


Sign in / Sign up

Export Citation Format

Share Document