Real-time path planning and following for nonholonomic unmanned ground vehicles

Author(s):  
Mohammad Ali Askari Hemmat ◽  
Zhixiang Liu ◽  
Youmin Zhang
2018 ◽  
Vol 06 (04) ◽  
pp. 231-250 ◽  
Author(s):  
Willson Amalraj Arokiasami ◽  
Prahlad Vadakkepat ◽  
Kay Chen Tan ◽  
Dipti Srinivasan

Autonomous unmanned vehicles are preferable in patrolling, surveillance and, search and rescue missions. Multi-agent architectures are commonly used for autonomous control of unmanned vehicles. Existing multi-robot architectures for unmanned aerial and ground robots are generally mission and platform oriented. Collision avoidance, path-planning and tracking are some of the fundamental requirements for autonomous operation of unmanned robots. Though aerial and ground vehicles operate differently, the algorithms for obstacle avoidance, path-planning and path-tracking can be generalized. Service Oriented Interoperable Framework for Robot Autonomy (SOIFRA) proposed in this work is an interoperable multi-agent framework focused on generalizing platform independent algorithms for unmanned aerial and ground vehicles. SOIFRA is behavior-based, modular and interoperable across unmanned aerial and ground vehicles. SOIFRA provides collision avoidance, and, path-planning and tracking behaviors for unmanned aerial and ground vehicles. Vector Directed Path-Generation and Tracking (VDPGT), a vector-based algorithm for real-time path-generation and tracking, is proposed in this work. VDPGT dynamically adopts the shortest path to the destination while minimizing the tracking error. Collision avoidance is performed utilizing Hough transform, Canny contour, Lucas–Kanade sparse optical flow algorithm and expansion of object-based time-to-contact estimation. Simulation and experimental results from Turtlebot and AR Drone show that VDPGT can dynamically generate and track paths, and SOIFRA is interoperable across multiple robotic platforms.


Author(s):  
Amir Sadrpour ◽  
Jionghua (Judy) Jin ◽  
A. Galip Ulsoy

Surveillance missions that involve unmanned ground vehicles (UGVs) include situations where a UGV has to choose between alternative paths to complete its mission. Currently, UGV missions are often limited by the available on-board energy. Thus, we propose a dynamic most energy-efficient path planning algorithm that integrates mission prior knowledge with real-time sensory information to identify the mission’s most energy-efficient path. Our proposed approach predicts and updates the distribution of energy requirement of alternative paths using recursive Bayesian estimation through two stages: (1) exploration — road segments are explored to reduce their energy prediction uncertainty; (2) exploitation — the most energy-efficient path is selected using the collected information in the exploration stage and is traversed. Our simulation results show that the proposed approach outperforms offline methods, as well as a method that only relies on exploitation to identify the most energy-efficient path.


2020 ◽  
Vol 53 (2) ◽  
pp. 15602-15607
Author(s):  
Jeevan Raajan ◽  
P V Srihari ◽  
Jayadev P Satya ◽  
B Bhikkaji ◽  
Ramkrishna Pasumarthy

Author(s):  
Parvathaneni Naga Srinivasu ◽  
Akash Kumar Bhoi ◽  
Rutvij H. Jhaveri ◽  
Gadekallu Thippa Reddy ◽  
Muhammad Bilal

2018 ◽  
Vol 06 (04) ◽  
pp. 251-266
Author(s):  
Phillip J. Durst ◽  
Christopher T. Goodin ◽  
Cindy L. Bethel ◽  
Derek T. Anderson ◽  
Daniel W. Carruth ◽  
...  

Path planning plays an integral role in mission planning for ground vehicle operations in urban areas. Determining the optimum path through an urban area is a well-understood problem for traditional ground vehicles; however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered. For an autonomous UGV, perception algorithms rather than platform mobility will be the limiting factor in operational capabilities. For this study, perception was incorporated into the path planning process by associating sensor error costs with traveling through nodes within an urban road network. Three common perception sensors were used for this study: GPS, LIDAR, and IMU. Multiple set aggregation operators were used to blend the sensor error costs into a single cost, and the effects of choice of aggregation operator on the chosen path were observed. To provide a robust path planning ability, a fuzzy route planning algorithm was developed using membership functions and fuzzy rules to allow for qualitative route planning in the case of generalized UGV performance. The fuzzy membership functions were then applied to several paths through the urban area to determine what sensors were optimized in each path to provide a measure of the UGV’s performance capabilities. The research presented in this paper shows the impacts that sensing/perception has on ground vehicle route planning by demonstrating a fuzzy route planning algorithm constructed by using a robust rule set that quantifies these impacts.


Sign in / Sign up

Export Citation Format

Share Document