Real-Time Path-Generation and Path-Following Using an Interoperable Multi-Agent Framework

2018 ◽  
Vol 06 (04) ◽  
pp. 231-250 ◽  
Author(s):  
Willson Amalraj Arokiasami ◽  
Prahlad Vadakkepat ◽  
Kay Chen Tan ◽  
Dipti Srinivasan

Autonomous unmanned vehicles are preferable in patrolling, surveillance and, search and rescue missions. Multi-agent architectures are commonly used for autonomous control of unmanned vehicles. Existing multi-robot architectures for unmanned aerial and ground robots are generally mission and platform oriented. Collision avoidance, path-planning and tracking are some of the fundamental requirements for autonomous operation of unmanned robots. Though aerial and ground vehicles operate differently, the algorithms for obstacle avoidance, path-planning and path-tracking can be generalized. Service Oriented Interoperable Framework for Robot Autonomy (SOIFRA) proposed in this work is an interoperable multi-agent framework focused on generalizing platform independent algorithms for unmanned aerial and ground vehicles. SOIFRA is behavior-based, modular and interoperable across unmanned aerial and ground vehicles. SOIFRA provides collision avoidance, and, path-planning and tracking behaviors for unmanned aerial and ground vehicles. Vector Directed Path-Generation and Tracking (VDPGT), a vector-based algorithm for real-time path-generation and tracking, is proposed in this work. VDPGT dynamically adopts the shortest path to the destination while minimizing the tracking error. Collision avoidance is performed utilizing Hough transform, Canny contour, Lucas–Kanade sparse optical flow algorithm and expansion of object-based time-to-contact estimation. Simulation and experimental results from Turtlebot and AR Drone show that VDPGT can dynamically generate and track paths, and SOIFRA is interoperable across multiple robotic platforms.

2017 ◽  
Vol 50 (1) ◽  
pp. 10626-10631 ◽  
Author(s):  
Mohamed Abdelkader ◽  
Hassan Jaleel ◽  
Jeff S. Shamma

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252542
Author(s):  
Yi Yu ◽  
Peng Han

The control method is the central point of the unmanned vehicles. As the core system to guarantee the properties of self-decision and trajectory tracking of the unmanned vehicles, a new kind of trajectory tracking method based on the circulation of feasible path planning for the unmanned vehicles are proposed in this article which considered the dynamics and kinematics characteristics of vehicles. The multi-trace-points cooperative trajectory tracking control strategy on the basis of the circulation of feasible path generation method is proposed and the lateral controller is designed for trajectory tracking. The process of feasible path generation is conducted once the tracking error exceeded. A simulation platform of the trajectory tracking simulation of unmanned vehicles is built considering the mechanical properties of system elements and the mechanical characteristics. Finally, the proposed trajectory tracking method is verified. The tracking error would be reduced to make sure the vehicles move along the pre-set virtual track.


Author(s):  
Ming C. Lin ◽  
Avneesh Sud ◽  
Jur Van den Berg ◽  
Russell Gayle ◽  
Sean Curtis ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 15602-15607
Author(s):  
Jeevan Raajan ◽  
P V Srihari ◽  
Jayadev P Satya ◽  
B Bhikkaji ◽  
Ramkrishna Pasumarthy

2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


Sign in / Sign up

Export Citation Format

Share Document