scholarly journals UAV Path Planning using Global and Local Map Information with Deep Reinforcement Learning

Author(s):  
Mirco Theile ◽  
Harald Bayerlein ◽  
Richard Nai ◽  
David Gesbert ◽  
Marco Caccamo
2021 ◽  
Vol 193 ◽  
pp. 107913
Author(s):  
Yuan Tang ◽  
Yiming Miao ◽  
Ahmed Barnawi ◽  
Bander Alzahrani ◽  
Reem Alotaibi ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


Author(s):  
Jiaxuan Fan ◽  
Zhenya Wang ◽  
Jinlei Ren ◽  
Ying Lu ◽  
Yiheng Liu

Author(s):  
Jie Zhong ◽  
Tao Wang ◽  
Lianglun Cheng

AbstractIn actual welding scenarios, an effective path planner is needed to find a collision-free path in the configuration space for the welding manipulator with obstacles around. However, as a state-of-the-art method, the sampling-based planner only satisfies the probability completeness and its computational complexity is sensitive with state dimension. In this paper, we propose a path planner for welding manipulators based on deep reinforcement learning for solving path planning problems in high-dimensional continuous state and action spaces. Compared with the sampling-based method, it is more robust and is less sensitive with state dimension. In detail, to improve the learning efficiency, we introduce the inverse kinematics module to provide prior knowledge while a gain module is also designed to avoid the local optimal policy, we integrate them into the training algorithm. To evaluate our proposed planning algorithm in multiple dimensions, we conducted multiple sets of path planning experiments for welding manipulators. The results show that our method not only improves the convergence performance but also is superior in terms of optimality and robustness of planning compared with most other planning algorithms.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 135513-135523
Author(s):  
Qingfeng Yao ◽  
Zeyu Zheng ◽  
Liang Qi ◽  
Haitao Yuan ◽  
Xiwang Guo ◽  
...  

2020 ◽  
Vol 53 (2) ◽  
pp. 15602-15607
Author(s):  
Jeevan Raajan ◽  
P V Srihari ◽  
Jayadev P Satya ◽  
B Bhikkaji ◽  
Ramkrishna Pasumarthy

Sign in / Sign up

Export Citation Format

Share Document