Single-human multiple-robot systems for urban search and rescue: Justifications, design and testing

Author(s):  
Choon Yue Wong ◽  
Gerald Seet ◽  
Siang Kok Sim ◽  
Wee Ching Pang
2014 ◽  
pp. 1142-1164
Author(s):  
Choon Yue Wong ◽  
Gerald Seet ◽  
Siang Kok Sim ◽  
Wee Ching Pang

Using a Single-Human Multiple-Robot System (SHMRS) to deploy rescue robots in Urban Search and Rescue (USAR) can induce high levels of cognitive workload and poor situation awareness. Yet, the provision of autonomous coordination between robots to alleviate cognitive workload and promote situation awareness must be made with careful management of limited robot computational and communication resources. Therefore, a technique for autonomous coordination using a hierarchically structured collective of robots has been devised to address these concerns. The technique calls for an Apex robot to perform most of the computation required for coordination, allowing Subordinate robots to be simpler computationally and to communicate with only the Apex robot instead of with many robots. This method has been integrated into a physical implementation of the SHMRS. As such, this chapter also presents practical components of the SHMRS including the robots used, the control station, and the graphical user interface.


Author(s):  
Choon Yue Wong ◽  
Gerald Seet ◽  
Siang Kok Sim ◽  
Wee Ching Pang

Using a Single-Human Multiple-Robot System (SHMRS) to deploy rescue robots in Urban Search and Rescue (USAR) can induce high levels of cognitive workload and poor situation awareness. Yet, the provision of autonomous coordination between robots to alleviate cognitive workload and promote situation awareness must be made with careful management of limited robot computational and communication resources. Therefore, a technique for autonomous coordination using a hierarchically structured collective of robots has been devised to address these concerns. The technique calls for an Apex robot to perform most of the computation required for coordination, allowing Subordinate robots to be simpler computationally and to communicate with only the Apex robot instead of with many robots. This method has been integrated into a physical implementation of the SHMRS. As such, this chapter also presents practical components of the SHMRS including the robots used, the control station, and the graphical user interface.


Author(s):  
Ruben Martin Garcia ◽  
Daniel Hernandez de la Iglesia ◽  
Juan F. de Paz ◽  
Valderi R. Q. Leithardt ◽  
Gabriel Villarrubia

2012 ◽  
Vol 19 (3) ◽  
pp. 46-56 ◽  
Author(s):  
Teodor Tomic ◽  
Korbinian Schmid ◽  
Philipp Lutz ◽  
Andreas Domel ◽  
Michael Kassecker ◽  
...  

2008 ◽  
Vol 41 (2) ◽  
pp. 3098-3103 ◽  
Author(s):  
Gurvinder S. Virk ◽  
Yiannis Gatsoulis ◽  
Mudassir Parack ◽  
Afsha Kherada

Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 55
Author(s):  
Diogo Matos ◽  
Pedro Costa ◽  
José Lima ◽  
Paulo Costa

Most path planning algorithms used presently in multi-robot systems are based on offline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real time, rather than planning in advance, by using a temporal estimation of the robot’s positions at any given time. In this article, the implementation of a control system for multi-robot applications that operate in environments where communication faults can occur and where entire sections of the environment may not have any connection to the communication network will be presented. This system uses the TEA* to plan multiple robot paths and a supervision system to control communications. The supervision system supervises the communication with the robots and checks whether the robot’s movements are synchronized. The implemented system allowed the creation and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA* algorithm. Using the Simtwo2020 simulation software, capable of simulating movement dynamics and the Lazarus development environment, it was possible to simulate the execution of several different missions by the implemented system and analyze their results.


2021 ◽  
Vol 19 (1) ◽  
pp. 33-38
Author(s):  
Ariel Braverman, BSc, RN, EMT-P

This paper’s purpose is to establish a methodological basis for using unmanned aerial vehicles (UAV) in urban search and rescue (USAR). Modern USAR operations involve the location, rescue (extrication), and initial medical stabilization of individuals trapped in confined spaces or places with complicated access, eg, high structures. As a part of the ongoing modernization process, this paper explores possible options for UAV utilization in USAR operations. Today, UAV are already taking part in support emergency operations all over the world, and possible forms of operation for UAV in USAR environment can be in two primary modes: on-site and logistic chain. The on-site mode includes various capabilities of multilayer UAV array, mostly based on enhanced visual capabilities to create situational awareness and to speed-up search and rescue (SAR) process including using nanodrones for entering into confined places, ventilation ducts, and underground sewer channels can give to rescue teams’ opportunities to have eyes within ruins even before initial clearing process. Cargo drones will be able to bring equipment directly to high floors or roadless areas in comparison to wheeled transportation. The advantages of cargo drones operation are the ability of autonomous flight based on GPS or homing beacon and ability to provide logistics supports without involving additional personnel and vehicles and with no dependence on road conditions.


Sign in / Sign up

Export Citation Format

Share Document