Design and Evaluation of Large Sized Floating Point Matrix Inversion Modules for Onboard Computer

Author(s):  
Chetan S ◽  
Manikandan J ◽  
Lekshmi V ◽  
Sudhakar S
Author(s):  
Siavash Amin-Nejad ◽  
Katayoon Basharkhah ◽  
Tayyebeh Asgari Gashteroodkhani

A wide variety of digital communication systems are encountered with high computational tasks. QR decomposition is one of such algorithms that can be implemented on FPGAs as a solution to large complex matrix inversion problems. A flexible vector processing architecture for the fixed and floating point implementations of the QR decomposition is presented. The design is implemented on the StratixIV device with 230K logic elements and verified with the SignalTap II built-in logic analyzer. Throughputs of 2.4M and 2.11M decompositions per second with maximum clock frequency of 340 MHz and 360 MHz are achieved for 4×4 matrices with the fixed and floating point designs respectively. The FPGA resource utilizations of the two data type implementations are also compared for different matrix sizes for the StratixIV and Arria10 devices.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2226
Author(s):  
Arif Mandangan ◽  
Hailiza Kamarulhaili ◽  
Muhammad Asyraf Asbullah

Matrix inversion is one of the most significant operations on a matrix. For any non-singular matrix A∈Zn×n, the inverse of this matrix may contain countless numbers of non-integer entries. These entries could be endless floating-point numbers. Storing, transmitting, or operating such an inverse could be cumbersome, especially when the size n is large. The only square integer matrix that is guaranteed to have an integer matrix as its inverse is a unimodular matrix U∈Zn×n. With the property that det(U)=±1, then U−1∈Zn×n is guaranteed such that UU−1=I, where I∈Zn×n is an identity matrix. In this paper, we propose a new integer matrix G˜∈Zn×n, which is referred to as an almost-unimodular matrix. With det(G˜)≠±1, the inverse of this matrix, G˜−1∈Rn×n, is proven to consist of only a single non-integer entry. The almost-unimodular matrix could be useful in various areas, such as lattice-based cryptography, computer graphics, lattice-based computational problems, or any area where the inversion of a large integer matrix is necessary, especially when the determinant of the matrix is required not to equal ±1. Therefore, the almost-unimodular matrix could be an alternative to the unimodular matrix.


Sign in / Sign up

Export Citation Format

Share Document