Author(s):  
LIANG-HUA CHEN ◽  
SHAO-HUA DENG ◽  
HONG-YUAN LIAO

This paper proposes a complete procedure for the extraction and recognition of human faces in complex scenes. The morphology-based face detection algorithm can locate multiple faces oriented in any direction. The recognition algorithm is based on the minimum classification error (MCE) criterion. In our work, the minimum classification error formulation is incorporated into a multilayer perceptron neural network. Experimental results show that our system is robust to noisy images and complex background.


Author(s):  
RUI ZHANG ◽  
XIAO QING DING ◽  
HAI LONG LIU

In offline handwritten character recognition, the classifier with modified quadratic discriminant function (MQDF) has achieved good performance. The parameters of MQDF classifier are commonly estimated by the maximum likelihood (ML) estimator, which maximizes the within-class likelihood instead of directly minimizing the classification errors. To improve the performance of MQDF classifier, in this paper, the MQDF parameters are revised by discriminative training using a minimum classification error (MCE) criterion. The proposed algorithm is applied to recognizing handwritten numerals and handwritten Chinese characters, the recognition rates obtained are among the highest that have ever been reported.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guanglei Xu ◽  
William S. Oates

AbstractRestricted Boltzmann Machines (RBMs) have been proposed for developing neural networks for a variety of unsupervised machine learning applications such as image recognition, drug discovery, and materials design. The Boltzmann probability distribution is used as a model to identify network parameters by optimizing the likelihood of predicting an output given hidden states trained on available data. Training such networks often requires sampling over a large probability space that must be approximated during gradient based optimization. Quantum annealing has been proposed as a means to search this space more efficiently which has been experimentally investigated on D-Wave hardware. D-Wave implementation requires selection of an effective inverse temperature or hyperparameter ($$\beta $$ β ) within the Boltzmann distribution which can strongly influence optimization. Here, we show how this parameter can be estimated as a hyperparameter applied to D-Wave hardware during neural network training by maximizing the likelihood or minimizing the Shannon entropy. We find both methods improve training RBMs based upon D-Wave hardware experimental validation on an image recognition problem. Neural network image reconstruction errors are evaluated using Bayesian uncertainty analysis which illustrate more than an order magnitude lower image reconstruction error using the maximum likelihood over manually optimizing the hyperparameter. The maximum likelihood method is also shown to out-perform minimizing the Shannon entropy for image reconstruction.


2021 ◽  
Vol 11 (9) ◽  
pp. 4292
Author(s):  
Mónica Y. Moreno-Revelo ◽  
Lorena Guachi-Guachi ◽  
Juan Bernardo Gómez-Mendoza ◽  
Javier Revelo-Fuelagán ◽  
Diego H. Peluffo-Ordóñez

Automatic crop identification and monitoring is a key element in enhancing food production processes as well as diminishing the related environmental impact. Although several efficient deep learning techniques have emerged in the field of multispectral imagery analysis, the crop classification problem still needs more accurate solutions. This work introduces a competitive methodology for crop classification from multispectral satellite imagery mainly using an enhanced 2D convolutional neural network (2D-CNN) designed at a smaller-scale architecture, as well as a novel post-processing step. The proposed methodology contains four steps: image stacking, patch extraction, classification model design (based on a 2D-CNN architecture), and post-processing. First, the images are stacked to increase the number of features. Second, the input images are split into patches and fed into the 2D-CNN model. Then, the 2D-CNN model is constructed within a small-scale framework, and properly trained to recognize 10 different types of crops. Finally, a post-processing step is performed in order to reduce the classification error caused by lower-spatial-resolution images. Experiments were carried over the so-named Campo Verde database, which consists of a set of satellite images captured by Landsat and Sentinel satellites from the municipality of Campo Verde, Brazil. In contrast to the maximum accuracy values reached by remarkable works reported in the literature (amounting to an overall accuracy of about 81%, a f1 score of 75.89%, and average accuracy of 73.35%), the proposed methodology achieves a competitive overall accuracy of 81.20%, a f1 score of 75.89%, and an average accuracy of 88.72% when classifying 10 different crops, while ensuring an adequate trade-off between the number of multiply-accumulate operations (MACs) and accuracy. Furthermore, given its ability to effectively classify patches from two image sequences, this methodology may result appealing for other real-world applications, such as the classification of urban materials.


2011 ◽  
Vol 58-60 ◽  
pp. 1847-1853 ◽  
Author(s):  
Yan Zhang ◽  
Cun Bao Chen ◽  
Li Zhao

In this paper, Gaussian Mixture model (GMM) as specific method is applied to noise classification. On this basis, a modified Gaussian Mixture Model with an embedded Auto-Associate Neural Network (AANN) is proposed. It integrates the merits of GMM and AANN. We train GMM and AANN as a whole and they are trained by means of Maximum Likelihood (ML). In the process of training, the parameter of GMM and AANN are updated alternately. AANN reshapes the distribution of the data and improves the similarity of the feature data in the same distribution type of noise. Experiments show that the GMM with embedded AANN improves accuracy rate of noise classification against baseline GMM.


Sign in / Sign up

Export Citation Format

Share Document