Learning deep neural network using max-margin minimum classification error

Author(s):  
Ziyong Feng ◽  
Zenghui Sun ◽  
Lianwen Jin
Author(s):  
LIANG-HUA CHEN ◽  
SHAO-HUA DENG ◽  
HONG-YUAN LIAO

This paper proposes a complete procedure for the extraction and recognition of human faces in complex scenes. The morphology-based face detection algorithm can locate multiple faces oriented in any direction. The recognition algorithm is based on the minimum classification error (MCE) criterion. In our work, the minimum classification error formulation is incorporated into a multilayer perceptron neural network. Experimental results show that our system is robust to noisy images and complex background.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yanli Yang ◽  
Peiying Fu

A method based on wavelet and deep neural network for rolling-element bearing fault data automatic clustering is proposed. The method can achieve intelligent signal classification without human knowledge. The time-domain vibration signals are decomposed by wavelet packet transform (WPT) to obtain eigenvectors that characterize fault types. By using the eigenvectors, a dataset in which samples are labeled randomly is configured. The dataset is roughly classified by the distance-based clustering method. A fine classification process based on deep neural network is followed to achieve accurate classification. The entire process is automatically completed, which can effectively overcome the shortcomings such as low work efficiency, high implementation cost, and large classification error caused by individual participation. The proposed method is tested with the bearing data provided by the Case Western Reserve University (CWRU) Bearing Data Center. The testing results show that the proposed method has good performance in automatic clustering of rolling-element bearings fault data.


Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Sign in / Sign up

Export Citation Format

Share Document