scholarly journals Fully Automatic Segmentation of the Right Ventricle Via Multi-Task Deep Neural Networks

Author(s):  
Liang Zhang ◽  
Georgios Vasileios Karanikolas ◽  
Mehmet Akcakaya ◽  
Georgios B. Giannakis
2014 ◽  
Vol 38 (3) ◽  
pp. 190-201 ◽  
Author(s):  
Jordan Ringenberg ◽  
Makarand Deo ◽  
Vijay Devabhaktuni ◽  
Omer Berenfeld ◽  
Pamela Boyers ◽  
...  

2021 ◽  
Vol 159 (6) ◽  
pp. 824-835.e1
Author(s):  
Rosalia Leonardi ◽  
Antonino Lo Giudice ◽  
Marco Farronato ◽  
Vincenzo Ronsivalle ◽  
Silvia Allegrini ◽  
...  

2021 ◽  
Author(s):  
Chih-Kuan Yeh ◽  
Been Kim ◽  
Pradeep Ravikumar

Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image is important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.


2020 ◽  
Vol 2 (8) ◽  
pp. 476-486 ◽  
Author(s):  
Patrick Schramowski ◽  
Wolfgang Stammer ◽  
Stefano Teso ◽  
Anna Brugger ◽  
Franziska Herbert ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Gakuto Aoyama ◽  
Longfei Zhao ◽  
Shun Zhao ◽  
Xiao Xue ◽  
Yunxin Zhong ◽  
...  

Accurate morphological information on aortic valve cusps is critical in treatment planning. Image segmentation is necessary to acquire this information, but manual segmentation is tedious and time consuming. In this paper, we propose a fully automatic aortic valve cusps segmentation method from CT images by combining two deep neural networks, spatial configuration-Net for detecting anatomical landmarks and U-Net for segmentation of aortic valve components. A total of 258 CT volumes of end systolic and end diastolic phases, which include cases with and without severe calcifications, were collected and manually annotated for each aortic valve component. The collected CT volumes were split 6:2:2 for the training, validation and test steps, and our method was evaluated by five-fold cross validation. The segmentation was successful for all CT volumes with 69.26 s as mean processing time. For the segmentation results of the aortic root, the right-coronary cusp, the left-coronary cusp and the non-coronary cusp, mean Dice Coefficient were 0.95, 0.70, 0.69, and 0.67, respectively. There were strong correlations between measurement values automatically calculated based on the annotations and those based on the segmentation results. The results suggest that our method can be used to automatically obtain measurement values for aortic valve morphology.


Sign in / Sign up

Export Citation Format

Share Document