Effects and Kinetics of Chlorine Dioxide Removal Microcystin-RR

Author(s):  
Ming-Song Wu ◽  
Ying Ji ◽  
Jun-Li Huang ◽  
Jiao Fu ◽  
Yu-Ling Zhang ◽  
...  
Keyword(s):  
2015 ◽  
Vol 55 (1) ◽  
pp. 366-370 ◽  
Author(s):  
Changwei Pan ◽  
Qingyu Gao ◽  
David M. Stanbury

2012 ◽  
Vol 29 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Mingsong Wu ◽  
Jingquan Liu ◽  
Shijie You ◽  
Li Wang ◽  
Junli Huang ◽  
...  
Keyword(s):  

2003 ◽  
Vol 53 (10) ◽  
pp. 1218-1224 ◽  
Author(s):  
James R. Kastner ◽  
Keshav C. Das ◽  
Cheng Hu ◽  
Ron McClendon

Holzforschung ◽  
2014 ◽  
Vol 68 (7) ◽  
pp. 733-746 ◽  
Author(s):  
Susanna Kuitunen ◽  
Ville Tarvo ◽  
Tiina Liitiä ◽  
Stella Rovio ◽  
Tapani Vuorinen ◽  
...  

Abstract A comprehensive model for alkaline extraction (E) of chlorine dioxide delignified (D0) softwood kraft pulp (KP) is presented. The dynamics of the process is modeled by taking into account both irreversible and reversible chemical reactions and gas-liquid and liquid-liquid mass transfer. Equations linking molecular-scale composition (amounts of monomeric lignin and carbohydrate structures) and general engineering parameters [κ number (KN), brightness, intrinsic viscosity, total organic carbon (TOC), chemical oxygen demand (COD), etc.] are presented. The model is capable of reproducing the development of KN and brightness from the molecular-level kinetics. Reactions responsible for the darkening of chlorine dioxide bleached (D0) pulp in alkali, brightening of pulp due to the action of hydrogen peroxide and oxygen, and reduction in KN were identified. The model predicts the chemical composition of both fiber wall and filtrate. This feature enables studies concerning the interaction of the AE chemistry with upstream (D0 washing) and downstream (D1 stage) processes. Quantitative physicochemical modeling approach also points out shortcoming in the present knowledge.


Sign in / Sign up

Export Citation Format

Share Document