Concept Drift Detection on Unlabeled Data Streams: A Systematic Literature Review

Author(s):  
Nur Laila Ab Ghani ◽  
Izzatdin Abdul Aziz ◽  
Mazlina Mehat
2021 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Tariq Mahmood ◽  
Tatheer Fatima

World is generating immeasurable amount of data every minute, that needs to be analyzed for better decision making. In order to fulfil this demand of faster analytics, businesses are adopting efficient stream processing and machine learning techniques. However, data streams are particularly challenging to handle. One of the prominent problems faced while dealing with streaming data is concept drift. Concept drift is described as, an unexpected change in the underlying distribution of the streaming data that can be observed as time passes. In this work, we have conducted a systematic literature review to discover several methods that deal with the problem of concept drift. Most frequently used supervised and unsupervised techniques have been reviewed and we have also surveyed commonly used publicly available artificial and real-world datasets that are used to deal with concept drift issues.


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 349-371
Author(s):  
Hassan Mehmood ◽  
Panos Kostakos ◽  
Marta Cortes ◽  
Theodoros Anagnostopoulos ◽  
Susanna Pirttikangas ◽  
...  

Real-world data streams pose a unique challenge to the implementation of machine learning (ML) models and data analysis. A notable problem that has been introduced by the growth of Internet of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data streams can change over time, resulting in poor prediction performance and ineffective decisions. While concept drift detection methods aim to patch this problem, emerging communication and sensing technologies are generating a massive amount of data, requiring distributed environments to perform computation tasks across smart city administrative domains. In this article, we implement and test a number of state-of-the-art active concept drift detection algorithms for time series analysis within a distributed environment. We use real-world data streams and provide critical analysis of results retrieved. The challenges of implementing concept drift adaptation algorithms, along with their applications in smart cities, are also discussed.


2019 ◽  
Vol 117 ◽  
pp. 90-102 ◽  
Author(s):  
Rodrigo F. de Mello ◽  
Yule Vaz ◽  
Carlos H. Grossi ◽  
Albert Bifet

2016 ◽  
Vol 20 (6) ◽  
pp. 1329-1350 ◽  
Author(s):  
Mahdie Dehghan ◽  
Hamid Beigy ◽  
Poorya ZareMoodi

2021 ◽  
Author(s):  
Ocean Wu ◽  
Yun Sing Koh ◽  
Gillian Dobbie ◽  
Thomas Lacombe

Author(s):  
Namitha K. ◽  
Santhosh Kumar G.

This article presents a stream mining framework to cluster the data stream and monitor its evolution. Even though concept drift is expected to be present in data streams, explicit drift detection is rarely done in stream clustering algorithms. The proposed framework is capable of explicit concept drift detection and cluster evolution analysis. Concept drift is caused by the changes in data distribution over time. Relationship between concept drift and the occurrence of physical events has been studied by applying the framework on the weather data stream. Experiments led to the conclusion that the concept drift accompanied by a change in the number of clusters indicates a significant weather event. This kind of online monitoring and its results can be utilized in weather forecasting systems in various ways. Weather data streams produced by automatic weather stations (AWS) are used to conduct this study.


Sign in / Sign up

Export Citation Format

Share Document