An instrumented electromechanical apparatus for mechanical characterization of human hand palm soft tissue

Author(s):  
Behzad Seyfi ◽  
Nasser Fatouraee ◽  
Mahdi Alizade Vaghasloo
2005 ◽  
Vol 33 (11) ◽  
pp. 1631-1639 ◽  
Author(s):  
Ahmad S. Khalil ◽  
Raymond C. Chan ◽  
Alexandra H. Chau ◽  
Brett E. Bouma ◽  
Mohammad R. Kaazempur Mofrad

2019 ◽  
Vol 39 (6) ◽  
pp. 817-826
Author(s):  
Shima Zaeimdar ◽  
Parvind Kaur Grewal ◽  
Zahra Haeri ◽  
Farid Golnaraghi

2016 ◽  
Vol 16 (08) ◽  
pp. 1640016 ◽  
Author(s):  
JING YANG ◽  
LINGTAO YU ◽  
LAN WANG ◽  
HONGYANG LI ◽  
QI AN

In recent years, virtual surgical simulation has been one of the hot direction of digital medical research, it is mainly used in teaching, training, diagnosis, preoperative planning, rehabilitation and modeling and analysis of surgical instruments. The modeling of soft tissue of human organs is the basis to realize the virtual surgical simulation. The quasi-linear viscoelastic (QLV) theory has been proposed by Fung, and it was widely used for modeling the constitutive equation of soft tissues. The purpose of this study is to determine the mechanical characterization of the liver soft tissue based on the PHANTOM Omni Haptic devices. Five parameters are included in the constitutive equation with QLV theory, which must be determined experimentally. The specimens were obtained from fresh porcine liver tissues in vitro. The liver tissues were cut into 14[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]14[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]14[Formula: see text]mm cubes. Two types of unconfined compression tests were performed on cube liver specimens. Puncture tests were performed on the complete liver. The material parameters of the QLV constitutive equation were obtained by fitting the experimental data. These parameters will provide the references for the computational modeling of the liver in the virtual surgical simulation.


2013 ◽  
Vol 5 (4) ◽  
pp. 045010 ◽  
Author(s):  
Ting Zhang ◽  
Karen Chang Yan ◽  
Liliang Ouyang ◽  
Wei Sun

2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document