Mobility data anonymization by obfuscating the cellular network topology graph

Author(s):  
Eduardo Baena Martinez ◽  
Michal Ficek ◽  
Lukas Kencl
Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 262-277
Author(s):  
Dr. Bhopendra Singh ◽  
P. Kavitha ◽  
R. Regin ◽  
Dr.K. Praghash ◽  
S. Sujatha ◽  
...  

VANET is a critical and demanding mission. Numerous methods exist, but none profits in a distributed fashion from physical layer parameters. This paper describes a method that enables individual nodes to estimate node density, independent of beacon messages, and other infrastructure-based information, of their surrounding network. In this paper, a discrete simulator of events was proposed to estimate the average number of simultaneously transmitting nodes, a functional channel model for the VANETs system, and a method of estimating node density. Proposed based on some equations to allow individual nodes to estimate their surrounding node density in real-time Optimized Node Cluster Algorithm with Network Density in which the composition of a cluster is triggered adjacent, these traffic signals is the same and has been predicated mostly on the position a vehicle might well take after crossing. Additional Ordered Tracking with Particle -Filter Routing in which receives simultaneous signal intensity versus node transmission and node density transmission. Conduct multiple location-related analyzes to test the plausibility of the neighboring single-hop nodes on mobility data. The system is designed to operate in the most complex situations where nodes have little knowledge of network topology and the results, therefore, indicate that the system is fairly robust and accurate.


2010 ◽  
Vol 21 (6) ◽  
pp. 1353-1363
Author(s):  
Xiao-Min ZHAO ◽  
Mei-Ya LANG ◽  
Qing-Zhang CHEN

2022 ◽  
Vol 15 (1) ◽  
pp. 0-0

Asymptomatic patients (AP) travel through neighborhoods in communities. The mobility dynamics of the AP makes it hard to tag them with specific interests. The lack of efficient monitoring systems can enable the AP to infect several vulnerable people in the communities. This article studied the monitoring of AP through their mobility and trajectory towards reducing the stress of socio-economic complications in the case of pandemics. Mobility and Trajectory based Technique for Monitoring Asymptomatic Patients (MTT-MAP) was established. The time-ordered spatial and temporal trajectory records of the AP were captured through their activities. A grid-based index data structure was designed based on network topology, graph theory and trajectory analysis to cater for the continuous monitoring of the AP over time. Also, concurrent object localisation and recognition, branch and bound, and multi-object instance strategies were adopted. The MTT-MAP has shown efficient when experimented with GeoLife dataset and can be integrated with state-of-the-art patients monitoring systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiao-zhu Xie ◽  
Ching-Chun Chang ◽  
Zhong-Liang Yang ◽  
Li Li

The Internet of Things (IoT) connects physical and digital worlds with mobile devices, accompanied by a surge in cybersecurity issues. With the rapid adoption of mobile devices, mobile forensics emerges as a new interdisciplinary field that concerns many forms of sabotage and cybercrime in the context of mobile computing. One of the most common cyberattacks is tampering. Digital watermarking is a tamper-evident technique used to protect data integrity. In this paper, we present an antitamper image watermarking scheme designed for mobile communications with low computational cost. A reference matrix based on cellular network topology is introduced to guide the watermark embedding and extraction processes. This reference matrix serves as a lookup table to reduce computational complexity, thereby enabling efficient implementation on mobile devices. Our scheme is aimed at offering high accuracy in detecting and localizing tampered regions. We also achieve a high watermarking capacity while leaving the visual quality of the carrier images nearly unharmed. Experimental results validate the effectiveness of our scheme against various types of simulated forgery including cropping and copy/paste attacks.


Sign in / Sign up

Export Citation Format

Share Document