A variable structure control scheme for uncertain discrete-time system

Author(s):  
Yibo Zhang ◽  
Jinggang Zhang ◽  
Zhimei Chen
2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
C. H. Chai ◽  
Johari H. S. Osman

A new local controller for discrete-time integral variable structure control of a large-scale system with matched and unmatched uncertainty is presented. The local controller is able to bring the large-scale system into stability by using only the states feedback from individual subsystem itself. A new theorem is established and proved that the controller is able to handle the effect of interconnection for the large-scale system with matched and unmatched uncertainty, and the system stability is ensured. The controller is able to control the system to achieve the quasi-sliding surface and remains on it. The results showed a fast convergence to the desired value and the attenuation of disturbance is achieved.


Author(s):  
Xiaoteng Tang ◽  
Li Chen

In this paper, the kinematics and dynamics of free-floating space robot system with dual-arms are analyzed. It is shown that the dynamic equations of the system are nonlinearly according to inertial parameters. In order to overcome these problems, the system is modeled as under-actuated robot system, and the idea of augmentation approach is adopted. It is demonstrated that the dynamic equations of the system can be linearly depending on a group of inertial parameters. Based on this result, a robust variable structure control scheme for free-floating space robot system with dual-arms with uncertain inertial parameters to track the desired trajectories in joint space is proposed, and a planar space robot system with dual-arms is simulated to verify the proposed control scheme. The advantage of the control scheme proposed is that it requires neither measuring the position, velocity and acceleration of the floating base with respect to the orbit nor controlling the position and attitude angle of the floating base. In addition to this advantage, it is computationally simple, because of choosing the controller robust for the uncertain inertial parameters rather than explicitly estimating them online.


Sign in / Sign up

Export Citation Format

Share Document