The Monitoring and Control Network System of a Enzymatic Processor VIA the TCP/IP Protocol Under OS Linux

Author(s):  
M. Matysek ◽  
M. Adamek ◽  
P. Neumann
2012 ◽  
Vol 203 ◽  
pp. 62-66
Author(s):  
Hong Li ◽  
Qiao Zhen Hou

The design uses 32 ARM processor S3C44B0X and Spartan™ -3E500 FPGA chip produced by Xinlinx company for setting up the hardware platform, and integrates the camera, GPS module, MiniGUI interface module. And realized bus vehicle mounted multimedia transmission control network control based on MOST. All of these are in the purpose of achieving a Predigest Project of vehicle-bone multimedia transmission and control network based on FPGA. The experiment indicated that, the transmission and control network system constructed by S3C44B0X and Spartan - 3E500 FPGA is low cast, simple and reliable.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 936 ◽  
Author(s):  
Radu L. Sumalan ◽  
Nicoleta Stroia ◽  
Daniel Moga ◽  
Vlad Muresan ◽  
Alexandru Lodin ◽  
...  

This paper presents the development of a cost-effective automatic system for greenhouse environment control. The architectural and functional features were analyzed in the context of the realization of a controlled-environment agricultural system through all its stages: installation, deployment of the software, integration, maintenance, crop control strategy setup and daily operation of the grower. The proposed embedded platform provides remote monitoring and control of the greenhouse environment and is implemented as a distributed sensing and control network integrating wired and wireless nodes. All nodes were built with low-cost, low-power microcontrollers. The key issues that were addressed include the energy-efficient control, the robustness of the distributed control network to faults and a low-cost hardware implementation. The translation of the supervisory growth-planning information to the operational (control network) level is achieved through a specific architecture residing on a crop planning module (CPM) and an interfacing block (IB). A suite of software applications with flows and interfaces developed from a grower-centric perspective was designed and implemented on a multi-tier architecture. The operation of the platform was validated through implementation of sensing and control nodes, application of software for configuration and visualization, and deployment in typical greenhouses.


Sign in / Sign up

Export Citation Format

Share Document