Contour tracking control for multi-DOF robotic manipulators

Author(s):  
P. R. Ouyang ◽  
V. Pano ◽  
J. Acob
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jun Yang ◽  
Jing Na ◽  
Guanbin Gao ◽  
Chao Zhang

Although adaptive control for robotic manipulators has been widely studied, most of them require the acceleration signals of the joints, which are usually difficult to measure directly. Although neural networks (NNs) have been used to approximate the unknown nonlinear dynamics in the robotic systems, the conventional adaptive laws for updating the NN weights cannot guarantee that the obtained NN weights converge to their ideal values, which could degrade the tracking control response. To address these two issues, a new adaptive algorithm with the extracted NN weights error is incorporated into adaptive control, where a novel leakage term is superimposed on the gradient method. By using the Lyapunov approach, the convergence of both the tracking error and the estimation error can be guaranteed simultaneously. In addition, two auxiliary functions are introduced to reformulate the robotic model for designing the adaptive law, and a filter operation is used to avoid measuring the acceleration signals. Comparisons to other well-recognized adaptive laws are given, and extensive simulations based on a 2-DOF SCARA robotic system are given to verify the effectiveness of the proposed control strategy.


2021 ◽  
Author(s):  
Vangjel Pano

Developed in this thesis is a new control law focusing on the improvement of contour tracking of robotic manipulators. The new control scheme is a hybrid controller based on position domain control (PDC) and position synchronization control (PSC). On PDC, the system’s dynamics are transformed from time domain to position domain via a one-to-one mapping and the position of the master axis motion is used as reference instead of time. The elimination of the reference motion from the control input improves contouring performance relative to time domain controllers. Conversely, PSC seeks to reduce the error of the systems by diminishing the synchronization error between each agent of the system. The new control law utilizes the aforementioned techniques to maximize the contour performance. The Lyapunov method was used to prove the proposed controller’s stability. The new control law was compared to existing control schemes via simulations of linear and nonlinear contours, and was shown to provide good tracking and contouring performances.


Sign in / Sign up

Export Citation Format

Share Document