scholarly journals On trajectory tracking control of prismatic and revolute joined robotic manipulators

2021 ◽  
Vol 29 (3) ◽  
pp. 398-408
Author(s):  
Anh Tuan Vo ◽  
Ngoc Hoai An Nguyen ◽  
Duy Duong Pham

This paper proposes an integral sliding mode for trajectory tracking control of robotic manipulators. Our proposed control method is developed on the foundation of the benefits in both integral sliding mode control and adaptive twisting control algorithm, such as high robustness, high accuracy, estimation ability, and chattering elimination. In this paper, the proposed integral sliding mode controller is designed with the elimination of the reaching phase to offer better trajectory tracking precision and to stabilize the robot system. To reduce the calculation burden along with chattering rejection, an adaptive twisting controller with only one simple adaptive rule is employed to estimate the upper-boundary values of the lumped uncertainties. Accordingly, the requirement of their prior knowledge is removed and then decrease the computation complexity. Consequently, this control method provides better trajectory tracking accuracy to handle the dynamic uncertainties and external disturbances more strongly. The system global stability of the control system is guaranteed by using Lyapunov criteria. Finally, simulated examples are performed to analyze the effectiveness of our control approach for position pathway tracking control of a 2-DOF parallel manipulator.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141984465 ◽  
Author(s):  
Chao Chen ◽  
Chengrui Zhang ◽  
Tianliang Hu ◽  
Hepeng Ni ◽  
Qizhi Chen

This article considers finite-time trajectory tracking control problem for robotic manipulators with parameter uncertainties and external disturbances. A finite-time controller that achieves high precision and strong robustness is proposed without the requirement of the exact dynamic model. First, a novel finite-time model-assisted extended state observer is designed to compensate the system uncertainties with complex and uncertain dynamics. Then, a composite finite-time controller is developed for trajectory tracking control with the help of finite-time model-assisted extended state observer. Compared to the classic extended state observer, it is proved that the estimation error of finite-time model-assisted extended state observer can be stabilized in finite time. Meanwhile, the finite-time convergence of the closed-loop system with the proposed controller can also be proved through Lyapunov’s stability theory. A variable structure term is employed to compensate the estimation errors of finite-time model-assisted extended state observer. The validity of the control scheme is demonstrated by simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document