Estimation of isometric joint torque from muscle activation and length in intrinsic hand muscle

Author(s):  
Won-Il Park ◽  
Hae-Dong Lee ◽  
Jung Kim
2019 ◽  
Vol 33 (9) ◽  
pp. 762-774 ◽  
Author(s):  
Jacqueline A. Palmer ◽  
Lewis A. Wheaton ◽  
Whitney A. Gray ◽  
Mary Alice Saltão da Silva ◽  
Steven L. Wolf ◽  
...  

Background/Objective. We investigated interhemispheric interactions in stroke survivors by measuring transcranial magnetic stimulation (TMS)–evoked cortical coherence. We tested the effect of TMS on interhemispheric coherence during rest and active muscle contraction and compared coherence in stroke and older adults. We evaluated the relationships between interhemispheric coherence, paretic motor function, and the ipsilateral cortical silent period (iSP). Methods. Participants with (n = 19) and without (n = 14) chronic stroke either rested or maintained a contraction of the ipsilateral hand muscle during simultaneous recordings of evoked responses to TMS of the ipsilesional/nondominant (i/ndM1) and contralesional/dominant (c/dM1) primary motor cortex with EEG and in the hand muscle with EMG. We calculated pre- and post-TMS interhemispheric beta coherence (15-30 Hz) between motor areas in both conditions and the iSP duration during the active condition. Results. During active i/ndM1 TMS, interhemispheric coherence increased immediately following TMS in controls but not in stroke. Coherence during active cM1 TMS was greater than iM1 TMS in the stroke group. Coherence during active iM1 TMS was less in stroke participants and was negatively associated with measures of paretic arm motor function. Paretic iSP was longer compared with controls and negatively associated with clinical measures of manual dexterity. There was no relationship between coherence and. iSP for either group. No within- or between-group differences in coherence were observed at rest. Conclusions. TMS-evoked cortical coherence during hand muscle activation can index interhemispheric interactions associated with poststroke motor function and potentially offer new insights into neural mechanisms influencing functional recovery.


2019 ◽  
Vol 119 (9) ◽  
pp. 2065-2073 ◽  
Author(s):  
David A. Rice ◽  
Jamie Mannion ◽  
Gwyn N. Lewis ◽  
Peter J. McNair ◽  
Lana Fort

2005 ◽  
Vol 94 (5) ◽  
pp. 3046-3057 ◽  
Author(s):  
Jonathan Shemmell ◽  
Matthew Forner ◽  
James R. Tresilian ◽  
Stephan Riek ◽  
Benjamin K. Barry ◽  
...  

In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion–supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.


2013 ◽  
Vol 38 (11) ◽  
pp. 2093-2099 ◽  
Author(s):  
Ursina Arnet ◽  
David A. Muzykewicz ◽  
Jan Fridén ◽  
Richard L. Lieber

2005 ◽  
Vol 54 (4) ◽  
pp. 315-323 ◽  
Author(s):  
TSUYOSHI NAKAJIMA ◽  
TAKASHI ENDOH ◽  
MASANORI SAKAMOTO ◽  
TOSHIKI TAZOE ◽  
TOMOYOSHI KOMIYAMA

2017 ◽  
Vol 42 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Jagannathan Madhanagopal ◽  
Om Prakash Singh ◽  
Vikram Mohan ◽  
Kathiresan V. Sathasivam ◽  
Abdul Hafidz Omar ◽  
...  

An accurate measurement of intrinsic hand muscle strength (IHMS) is required by clinicians for effective clinical decision-making, diagnosis of certain diseases, and evaluation of the outcome of treatment. In practice, the clinicians use Intrins-o-meter and Rotterdam Intrinsic Hand Myometer for IHMS measurement. These are quite bulky, expensive, and possess poor interobserver reliability (37–52%) and sensitivity. The purpose of this study was to develop an alternative lightweight, accurate, cost-effective force measurement device with a simple electronic circuit and test its suitability for IHMS measurement. The device was constructed with ketjenblack/deproteinized natural rubber sensor, 1-MΩ potential divider, and Arduino Uno through the custom-written software. Then, the device was calibrated and tested for accuracy and repeatability within the force range of finger muscles (100 N). The 95% limit of agreement in accuracy from −1.95 N to 2.06 N for 10 to 100 N applied load and repeatability coefficient of ±1.91 N or 6.2% was achieved. Furthermore, the expenditure for the device construction was around US$ 53. For a practical demonstration, the device was tested among 16 participants for isometric strength measurement of the ulnar abductor and dorsal interossei. The results revealed that the performance of the device was suitable for IHMS measurement.


2007 ◽  
Vol 97 (1) ◽  
pp. 912-920 ◽  
Author(s):  
G. Ganesh ◽  
D. W. Franklin ◽  
R. Gassert ◽  
H. Imamizu ◽  
M. Kawato

Real-time acquisition of EMG during functional MRI (fMRI) provides a novel method of controlling motor experiments in the scanner using feedback of EMG. Because of the redundancy in the human muscle system, this is not possible from recordings of joint torque and kinematics alone, because these provide no information about individual muscle activation. This is particularly critical during brain imaging because brain activations are not only related to joint torques and kinematics but are also related to individual muscle activation. However, EMG collected during imaging is corrupted by large artifacts induced by the varying magnetic fields and radio frequency (RF) pulses in the scanner. Methods proposed in literature for artifact removal are complex, computationally expensive, and difficult to implement for real-time noise removal. We describe an acquisition system and algorithm that enables real-time acquisition for the first time. The algorithm removes particular frequencies from the EMG spectrum in which the noise is concentrated. Although this decreases the power content of the EMG, this method provides excellent estimates of EMG with good resolution. Comparisons show that the cleaned EMG obtained with the algorithm is, like actual EMG, very well correlated with joint torque and can thus be used for real-time visual feedback during functional studies.


2016 ◽  
Vol 41 (4) ◽  
pp. 392-399 ◽  
Author(s):  
A. Al-Sukaini ◽  
H. P. Singh ◽  
J. J. Dias

This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18–74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted.


2006 ◽  
Vol 21 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Derek G. Kamper ◽  
Heidi C. Fischer ◽  
Erik G. Cruz

Sign in / Sign up

Export Citation Format

Share Document