A hierarchical shot detection method for MPEG video information college

Author(s):  
Cai Li-Hua
2009 ◽  
Vol 11 (5) ◽  
pp. 879-891 ◽  
Author(s):  
Xiangmin Zhou ◽  
Xiaofang Zhou ◽  
Lei Chen ◽  
A. Bouguettaya ◽  
Nong Xiao ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5360
Author(s):  
Taehyung Kim ◽  
Jiwon Mok ◽  
Euichul Lee

For accurate and fast detection of facial landmarks, we propose a new facial landmark detection method. Previous facial landmark detection models generally perform a face detection step before landmark detection. This greatly affects landmark detection performance depending on which face detection model is used. Therefore, we propose a model that can simultaneously detect a face region and a landmark without performing the face detection step before landmark detection. The proposed single-shot detection model is based on the framework of YOLOv3, a one-stage object detection method, and the loss function and structure are altered to learn faces and landmarks at the same time. In addition, EfficientNet-B0 was utilized as the backbone network to increase processing speed and accuracy. The learned database used 300W-LP with 64 facial landmarks. The average normalized error of the proposed model was 2.32 pixels. The processing time per frame was about 15 milliseconds, and the average precision of face detection was about 99%. As a result of the evaluation, it was confirmed that the single-shot detection model has better performance and speed than the previous methods. In addition, as a result of using the COFW database, which has 29 landmarks instead of 64 to verify the proposed method, the average normalization error was 2.56 pixels, which was also confirmed to show promising performance.


Author(s):  
Shu-Ching Chen ◽  
Mei-Ling Shyu ◽  
Chengcui Zhang

Recently, multimedia information, especially video data, has been made overwhelmingly accessible with the rapid advances in communication and multimedia computing technologies. Video is popular in many applications, which makes the efficient management and retrieval of the growing amount of video information very important. Toward such a demand, an effective video shot boundary detection method is necessary, which is a fundamental operation required in many multimedia applications. In this chapter, an innovative shot boundary detection method using an unsupervised segmentation algorithm and the technique of object tracking based on the segmentation mask maps is presented. A series of experiments on various types of video types are performed, and the experimental results show that our method can obtain object-level information of the video frames as well as accurate shot boundary detection, which are very useful for video content indexing.


2011 ◽  
Author(s):  
Jyoti Dhillon ◽  
Krishna Kakkirala ◽  
Srinivasa Rao Chalamala

Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
Weihai Sun ◽  
Lemei Han

Machine fault detection has great practical significance. Compared with the detection method that requires external sensors, the detection of machine fault by sound signal does not need to destroy its structure. The current popular audio-based fault detection often needs a lot of learning data and complex learning process, and needs the support of known fault database. The fault detection method based on audio proposed in this paper only needs to ensure that the machine works normally in the first second. Through the correlation coefficient calculation, energy analysis, EMD and other methods to carry out time-frequency analysis of the subsequent collected sound signals, we can detect whether the machine has fault.


Sign in / Sign up

Export Citation Format

Share Document