Comparison of downlink multi-user multiple input multiple output schemes in wireless communication systems

Author(s):  
Wei Huang ◽  
Kai Sun ◽  
Fengshan Bai ◽  
Yanjie Zhao
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1567
Author(s):  
Sang-Hoon Lee ◽  
Ahmed Al Al Amin ◽  
Soo-Young Shin

Spectral efficiency is a major concern for future 6G wireless communication systems. Thus, an appropriate scheme is needed to provide channel capacity improvement for multiple transmitters and receiver-based wireless communication systems without consuming extra resource for communication (e.g., frequency/time/code) or causing interference. Therefore, to fulfill the mentioned requirements for the future 6G wireless network, orbital angular momentum-based multiple-input-multiple-output (OAM-MIMO) multiplexing technique is incorporated with the receive antenna shift keying (RASK) technique in this study (termed as the OAM-MIMO-RASK scheme). OAM-MIMO-RASK can transfer multiple symbols from multiple transmitters to different receivers simultaneously by using multiple subchannels using the OAM and RASK techniques without any interference or additional resource (frequency/time/code). The numerical results illustrated that the proposed OAM-MIMO-RASK can achieve almost double capacity than the existing OAM-MIMO scheme and significantly higher capacity than the existing RASK-based scheme for different values of signal-to-noise ratio. Moreover, the simulation result is validated by the theoretical result which is also shown by the numerical result. In addition, due to different normalized distances from the transmitters and receivers, the proposed OAM-MIMO-RASK scheme can achieve almost double capacity than the existing OAM-MIMO scheme by using OAM-MIMO and RASK technique effectively which is also depicted by the numerical results.


Author(s):  
Zhaocheng Wang ◽  
Jiaxuan Chen

With the escalation of heterogeneous data traffic, the research on optical wireless communication (OWC) has attracted much attention, owing to its advantages such as wide spectrum, low power consumption and high security. Ubiquitous optical devices, e.g. light-emitting diodes (LEDs) and cameras, are employed to support optical wireless links. Since the distribution of these optical devices is usually dense, multiple-input-multiple-output (MIMO) can be naturally adopted to attain spatial diversity gain or spatial multiplexing gain. As the scale of OWC networks enlarges, optical MIMO can also collaborate with network-level operations, like user/AP grouping, to enhance the network throughput. Since OWC is preferred for short-range communications and is sensitive to the directions/rotations of transceivers, optical MIMO links vary frequently and sharply in outdoor scenarios when considering the mobility of optical devices, raising new challenges to network design. In this work, we present an overview of optical MIMO techniques, as well as the cooperation of MIMO and user/AP grouping in OWC networks. In consideration of the challenges for outdoor OWC, key technologies are then proposed to facilitate the adoption of optical MIMO in outdoor scenarios, especially in vehicular ad hoc networks. Lastly, future applications of MIMO in OWC networks are discussed. This article is part of the theme issue ‘Optical wireless communication’.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Sign in / Sign up

Export Citation Format

Share Document