Smart Meter in Voltage Control System of Power Network

Author(s):  
Ariel Antonowicz ◽  
Piotr Derbis ◽  
Mariusz Nowak ◽  
Andrzej Urbaniak
2021 ◽  
Vol 7 (7) ◽  
pp. 61-70
Author(s):  
Andrey A. TATEVOSYAN ◽  

A method for optimizing the parameters of a modular half-speed synchronous generator with permanent magnets (PMSG) and the generator voltage control system with a neural network-based algorithm are proposed. The basic design scheme of the modular half-speed PMSG is considered, which features a compact layout of the generator main parts, thereby ensuring the optimal use of the working volume, smaller sizes of the magnetic system, and smaller mass of the active materials used in manufacturing the machine. Owing to the simple and reliable design of the generator, its output parameters can be varied in a wide range with using standard electrical circuits for voltage stabilization and current rectification along with an additional voltage regulation unit. Owing to this feature, the design scheme of the considered generator has essential advantages over the existing analogs with a common cylindrical magnetic core. In view of these circumstances, the development of a high-efficient modular half-speed PMSG as an autonomous DC power source is of both scientific and practical interest; this generator can be used to supply power to a large range of electricity consumers located in rural areas, low-rise residential areas, military communities, allotments etc. In solving the problem of optimizing the generator’s magnetic system, the main electrical machine analysis equation is obtained. The optimal ratios of the winding wire mass to the mass of permanent magnets and of the PM height to the air gap value for achieving the maximum specific useful power output have been determined. An analytical correlation between the optimal design parameters of a half-speed modular PMSG and its power performance parameters has been established. The expediency to develop a neural network-based control system is shown. The number of load-bearing modules of the half-speed PMSG is determined depending on the wind velocity, load factor and the required output voltage. The neural network was trained on the examples of a training sample using a laboratory test bench. The neural network was implemented in the MatLab 2019b environment by constructing a synchronous generator simulation model in the Simulink software extension. The possibility of using the voltage control system of a half-speed modular PMSG with a microcontroller for operation of the neural network platform of the Arduino family (ArduinoDue) independently of the PC is shown.


2014 ◽  
Vol 960-961 ◽  
pp. 823-827
Author(s):  
Ying Pan ◽  
Bo Jiang

As an important part of Smart Grid, smart metering attracts more and more attention all over the world. It is the way for energy consumer to sense the benefit of smart grid directly. Smart meter is an advanced energy meter that measures consumption of electrical energy providing additional information compared to a conventional energy meter. This paper discusses various applications and technologies that can be integrated with a smart meter. Smart meters can be used not only from the supply side monitoring but also for the demand side management as well. It plays an important role to monitor the performance and the energy usage of the grid loadings and power quality. In addition, This paper gives a comprehensive view on the benefit of smart metering in power network such as energy efficiency improvement.


2021 ◽  
Author(s):  
J. Hrouda ◽  
A. Bodor ◽  
F. Kysnar ◽  
K. Procházka

2018 ◽  
Vol 1067 ◽  
pp. 072030 ◽  
Author(s):  
Fumihiko Tamura ◽  
Yasuyuki Sugiyama ◽  
Masahito Yoshii ◽  
Chihiro Ohmori ◽  
Masanobu Yamamoto ◽  
...  

2018 ◽  
Vol 7 (2.28) ◽  
pp. 362
Author(s):  
Raed A. Shalwala

One of the most important operational requirements for any electrical power network for both distribution and transmission level is voltage control. Many studies have been carried out to improve or develop new voltage control techniques to facilitate safe connection of distributed generation. In Saudi Arabia, due to environmental, economic and development perspectives, a wide integration of photovoltaic (PV) genera-tion in distribution network is expected in the near future. This development in the network may cause voltage regulation problems due to the interaction with the existing conventional control system. In a previous paper, a control system has been described using a fuzzy logic control to set the on-line tap changer for the primary substation. In this paper a new control system is proposed for controlling the power factor of individual PV invertors based on observed correlation between net active and reactive power at each connection. A fuzzy logic control has been designed to alter the power factor for the remote invertors from the secondary substation to keep the feeder voltage within the permissible limits. In order to confirm the validity of the proposed method, simulations are carried out for a realistic distribution network with real data for load and solar radiation. Results showing the performance of the new control method are presented and discussed.  


Sign in / Sign up

Export Citation Format

Share Document