Split step finite difference algorithm for high-energy pulse propagation in long-distance optical fiber

Author(s):  
Deshuang Zhao ◽  
Liu Yongzhi ◽  
Zhang Changming ◽  
Huang Xiujiang
2017 ◽  
Vol 83 (2) ◽  
Author(s):  
Erik Wallin ◽  
Arkady Gonoskov ◽  
Christopher Harvey ◽  
Olle Lundh ◽  
Mattias Marklund

Although, for current laser pulse energies, the weakly nonlinear regime of laser wakefield acceleration is known to be the optimal for reaching the highest possible electron energies, the capabilities of upcoming large laser systems will provide the possibility of running highly nonlinear regimes of laser pulse propagation in underdense or near-critical plasmas. Using an extended particle-in-cell (PIC) model that takes into account all the relevant physics, we show that such regimes can be implemented with external guiding for a relatively long distance of propagation and allow for the stable transformation of laser energy into other types of energy, including the kinetic energy of a large number of high energy electrons and their incoherent emission of photons. This is despite the fact that the high intensity of the laser pulse triggers a number of new mechanisms of energy depletion, which we investigate systematically.


Optics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 96-102
Author(s):  
Ewan Allan ◽  
Craig Ballantine ◽  
Sebastian C. Robarts ◽  
David Bajek ◽  
Richard A. McCracken

Fiber-feedback optical parametric oscillators (OPOs) incorporate intracavity fibers to provide a compact high-energy wavelength-tunable laser platform; however, dispersive effects can limit operation to the sub-picosecond regime. In this research article, we modeled pulse propagation through systems of cascaded fibers, incorporating SMF-28 and ultra-high numerical aperture (UHNA) fibers with complementary second-order dispersion coefficients. We found that the pulse duration upon exiting the fiber system is dominated by uncompensated third-order effects, with UHNA7 presenting the best opportunity to realise a cascaded-fiber-feedback OPO.


2000 ◽  
Vol 25 (8) ◽  
pp. 587 ◽  
Author(s):  
E. Zeek ◽  
R. Bartels ◽  
M. M. Murnane ◽  
H. C. Kapteyn ◽  
S. Backus ◽  
...  

2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Jonathan Andreasen ◽  
Miroslav Kolesik

AbstractThis work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide modes. These simulations can be computationally expensive, however, so cost is reduced in the improved method by considering only the waveguide core. Fields in the cladding are then properly accounted for through a boundary condition suitable for the case of total internal reflection.


2009 ◽  
Vol 12 ◽  
pp. 219-241 ◽  
Author(s):  
Mohamed Bakry El Mashade ◽  
Mohamed Nady Abdel Aleem

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3879 ◽  
Author(s):  
Pil Sang ◽  
Junseok Heo ◽  
Hui Park ◽  
Hyoung Baac

We demonstrate a photoacoustic sensor capable of measuring high-energy nanosecond optical pulses in terms of temporal width and energy fluence per pulse. This was achieved by using a hybrid combination of a carbon nanotube-polydimethylsiloxane (CNT-PDMS)-based photoacoustic transmitter (i.e., light-to-sound converter) and a piezoelectric receiver (i.e., sound detector). In this photoacoustic energy sensor (PES), input pulsed optical energy is heavily absorbed by the CNT-PDMS composite film and then efficiently converted into an ultrasonic output. The output ultrasonic pulse is then measured and analyzed to retrieve the input optical characteristics. We quantitatively compared the PES performance with that of a commercial thermal energy meter. Due to the efficient energy transduction and sensing mechanism of the hybrid structure, the minimum-measurable pulsed optical energy was significantly lowered, ~157 nJ/cm2, corresponding to 1/760 of the reference pyroelectric detector. Moreover, despite the limited acoustic frequency bandwidth of the piezoelectric receiver, laser pulse widths over a range of 6–130 ns could be measured with a linear relationship to the ultrasound pulse width of 22–153 ns. As CNT has a wide electromagnetic absorption spectrum, the proposed pulsed sensor system can be extensively applied to high-energy pulse measurement over visible through terahertz spectral ranges.


2014 ◽  
Author(s):  
Doruk Engin ◽  
Ibraheem Darab ◽  
John Burton ◽  
Jean-Luc Fouron ◽  
Frank Kimpel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document